
Parallel Minesweeper Solver

Haoxiang Zhang (hz2763)

December 22, 2021

1 Introduction

Minesweeper is a classic interactive puzzle game that aims to recover all positions of mines
without detonating any of them, using clues that tell how many mines are adjacent to a
discovered tile. Solving a consistent board has been proven to be co-NP-Complete. 1 Due
to the interactive nature of this game, there is a significant portion of a solving process that
is going to be sequential, but the hard part of deciding which cells are safe at each step can
be sped up using parallel back-tracking. As size of the board grows larger and by deducting
multiple safe cells given each board state, the proportion of sequential computations should
decrease, giving parallel solver a higher speedup.

2 Problem Formulation

Given a Minesweeper game board with some open tiles, the program should try to find all
guaranteed tiles that are safe to click on. If there are no such tiles, the program should
return a guess that is one of the least-likely-to-be-a-mine tiles. Repeat this process until
all non-mine tiles are opened or when program steps on a mine.

3 Algorithm

3.1 Tank solver algorithm

I used the tank solver algorithm for solving this problem2. The algorithm at its core involves
enumerating all possible configurations of the mines that satisfies given information on the
current board. Then for each tile position, consider among all the possible configurations,
how many of them involves the position being a mine. If a tile is not a mine in all possible

1Scott, A., Stege, U. & van Rooij, I. Minesweeper May Not Be NP-Complete but Is Hard Nonetheless.
Math Intelligencer 33, 5–17 (2011). https://doi.org/10.1007/s00283-011-9256-x

2https://luckytoilet.wordpress.com/2012/12/23/2125/

1



configurations, then the program can safely decide that it is a guaranteed safe tile to click
on. But if tiles of such kind doesn’t exist, the program will choose the position that is least
likely to be a mine, which appears to be a mine in the least number of configurations. The
time complexity of this algorithm is O(2n).

Figure 1: Enumeration of all possible configurations

3.2 Backtracking

To enumerate all possible configurations, the program uses backtracking. First, it needs
to find all the connected tiles that is adjacent or diagonally adjacent to at least one open
tiles. Each of this connected unopened tiles strip is called a coastal path. For all tiles on
the coastal path, we can perform a relative cheap check on whether it being a mine or not
violates some of the information from its neighbors. Starting with one end of the path,
the program checks if the tile can possibly be a mine given the current information. If yes,
it makes the assumption that this tile is a mine and proceeds to the next one; if no, the
tile would be assumed not a mine and program proceeds. Upon reaching the end of the
path, the program will have found one possible configuration that is all the assumptions
used to reach here. It will then alter the last assumption and proceed from there. When
both states of a tile has been explored or a conflict is found, the program returns to the
previous tile and try to proceed by altering its assumption.

2



4 Implementation

The input to backtracking function includes state of the game represented as width,
height, opens (set of open tile positions as Point), nums (numbers on open tiles); and
progress of current backtracking as unprocessed coastal path and assumed mine positions
from processed coastal path. At each step, the function takes the first item out of the
unprocessed coastal path, and verifies whether it can be a mine or not. For each possible
state of this tile, another backtracking function is called to search for further states, by
taking this point out of current unprocessed coastal path and adding it to assumed mine
position if applies.

The return value is a tuple of the number of possible configurations for the coastal path, and
a map that counts for each point, how many times in all configurations is it not a mine.
The ending state is when the unprocessed coastal path is empty, and the function will
return an empty map with a 1, indicating that it is a success search of valid configuration.
At each step, after the function receives values from the recursive calls, it will merge the
maps and sum up values for each tile position if applicable, adding the current point to
the map with the number of valid configurations found and return the new tuple.

The parallel implementation is simply creating a spark for each possibility when a tile could
potentially be both a mine and not a mine. To prevent too much spark being spawned,
this will only take place when the unprocessed length of the coastal path is longer than
5.

Figure 2: CPU load on Threadscope

3



5 Performance

The parallel performance is quite dependent on the size of the coastal line and how much
of a run is hard to process, which varies a lot from game to game. To benchmark between
different number of cores, seeded boards are played across configurations. Table 1 shows
the execution time on some seeded boards using different number of cores. The tests are
all conducted on a typical ”hard” minesweeper board with size 30×16 and 99 mines.

(s) N1 N2 N4 N8

seed 1 12.89 10.06 10.37 15.55

seed 2 19.75 13.64 10.23 12.67

seed 3 100.57 95.01 60.71 70.73

Table 1: Execution time in parallel

There is some speedup with parallel, but it cannot break even with the overhead of 8 cores,
at least not likely on a board of this size. With a easier task, namely a smaller coastal
path length at most steps, the speed up of more cores might not be worth the overhead
cost. Due to the dynamic creation of sparks, the load balancing between cores is usually
fine. Figure 2 shows a sample run with -N4.

6 Code Listing

6.1 Main.hs

1 module Main ( main ) where

2
3 import Data.List ( elemIndex )

4 import Data.List.Split ( splitOneOf , chunksOf )

5 import Data.Char ( toUpper )

6
7 import Data.Set ( Set )

8 import Data.Set as Set ( member , notMember , size , insert , empty , null ,

foldr , filter)

9
10 import Data.Maybe ( isNothing )

11 import Control.Monad ( forM , forM_ , when)

12
13 import System.Environment ( getArgs )

14 import System.Exit ( exitSuccess)

15 import System.Random ( randomR , mkStdGen )

16
17 import Util

18 import MapGenerator ( minePoints )

19 import LayoutRender ( drawPlay , drawOver )

4



20 import AISolver ( showAllPossibleSafePoints , nextMove )

21
22 -- | Calculate the number of surrounding mines for each point.

23 neighbourMines :: Set Point -> Int -> Int -> [[Int]]

24 neighbourMines minePs w h = chunksOf w $ map neighbourMinesOf (gridPoints w

h)

25 where neighbourMinesOf :: Point -> Int

26 neighbourMinesOf s = Set.foldr (\p acc -> acc + fromEnum (member

p minePs)) 0 (neighboursOf w h s)

27
28 -- | Control the whole interactive process during game.

29 play :: Set Point -> Set Point -> [[Int]] -> Int -> IO ()

30 play opens minePs nums count = do

31 drawPlay opens nums

32 let (w, h) = dimension nums

33 if Set.null minePs

34 then do

35 -- Just start at some random point

36 let

37 gen = mkStdGen 42

38 row = fst $ randomR (0, w-1) gen

39 col = fst $ randomR (0, h-1) gen

40 point = (3,3) -- or you could use row col for

random start

41 minePs ’ = minePoints w h count point

42 nums ’ = neighbourMines minePs ’ w h

43 print point

44 update opens minePs ’ nums ’ count [point ,point]

45 else do

46 let safe_moves = nextMove w h opens nums

47 if not $ Prelude.null safe_moves

48 then do

49 putStrLn $ showAllPossibleSafePoints w h opens nums

50 update opens minePs nums count safe_moves

51 else do

52 putStrLn "No more safe moves .\n"

53
54
55 -- | An extract function from play. This function is responsible for

56 -- updating the open state of Points and the game layout.

57 update :: Set Point -> Set Point -> [[Int]] -> Int -> [Point] -> IO ()

58 update opens minePs nums count points@(point:xs) =

59 if point ‘member ‘ minePs

60 then do

61 drawOver minePs nums

62 putStrLn "Game OVER! You may want to try again ?\n"

63 exitSuccess

64 else do

65 let newOpens = reveal point opens minePs nums

66 (w, h) = dimension nums

5



67 if size newOpens == w * h - size minePs

68 then do

69 drawPlay newOpens nums

70 putStrLn "Congratulations !\n"

71 exitSuccess

72 else do

73 if Prelude.null xs

74 then do play newOpens minePs nums count

75 else do update newOpens minePs nums count xs

76 update opens minePs nums count points =

77 do print "Error in update: no points received"

78
79
80 -- | Handle reveal event , recursively reveal neighbour Points if necessary.

81 reveal :: Point -> Set Point -> Set Point -> [[Int]] -> Set Point

82 reveal n opens minePs nums

83 | n ‘member ‘ opens = opens -- Point n already opened

84 | numAtPoint nums n /= 0 = insert n opens

85 | otherwise = let newOpens = insert n opens

86 in Set.foldr (\p acc -> reveal p acc minePs

nums) newOpens

87 (safeUnopenedNeighbours n newOpens

minePs)

88 where

89 (w, h) = dimension nums

90
91 safeUnopenedNeighbours :: Point -> Set Point -> Set Point ->

Set Point

92 safeUnopenedNeighbours p opens minePs =

93 Set.filter (\nb -> nb ‘notMember ‘ minePs && nb ‘notMember ‘

opens) (neighboursOf w h p)

94
95
96 main :: IO ()

97 main = do

98 [width , height , count] <- getArgs

99 let w = read width :: Int

100 h = read height :: Int

101 c = read count :: Int

102
103 maxMines = w * h ‘quot ‘ 2

104 maxHeight = length rows

105 if c > maxMines

106 then putStrLn $ "Number of mines should less then " ++ show

maxMines

107 else if h > maxHeight

108 then putStrLn $ "Number of rows should no greater then " ++

show maxHeight

109 else play empty empty (replicate h (replicate w 0)) c

6



6.2 AISolver.hs

1 module AISolver ( showAllPossibleSafePoints , nextMove ) where

2
3 import Util

4
5 import Data.Set ( Set )

6 import Data.Set as Set ( foldr , null , notMember , union , intersection ,

size , toAscList

7 , insert , empty , member , filter )

8
9 import Data.Sequence ( Seq )

10 import Data.Sequence as Seq ( empty , filter , (<|), update , index ,

findIndexL , drop , take

11 , (><), mapWithIndex , foldrWithIndex , length )

12 import Data.Foldable (toList)

13 import Data.Map (Map)

14 import Data.Map as Map ( empty , singleton , unionWith , union ,

foldWithKey)

15 import Control.Monad.Par ( spawnP , get , runPar)

16 import Debug.Trace ( trace)

17
18 -- | Find all unrevealed neighbours of an opened Point as a Set for

19 -- all open Points , and put all the sets in a Sequence.

20 classifyNeighboursByOpens :: Int -> Int -> Set Point -> Seq (Set Point)

21 classifyNeighboursByOpens w h opens =

22 Seq.filter (not . Set.null) $
23 Set.foldr (\p acc -> unrevealNeighboursOf p <| acc) Seq.empty opens

24 where unrevealNeighboursOf p = Set.filter (‘notMember ‘ opens) (

neighboursOf w h p)

25
26 -- | Make continuous Points in a group , and return all these groups in a

Sequence.

27 groupContinuousPs :: Seq (Set Point) -> Int -> Seq (Set Point)

28 groupContinuousPs seq location | location >= Seq.length seq - 1 = seq

29 | Just n <- findGroupNeighbour ed =

30 groupContinuousPs (Seq.take location

seq ><

31 Seq.update n (

st ‘Set.union ‘ (ed ‘index ‘ n)) ed) location

32 | otherwise =

groupContinuousPs seq (location + 1)

33 where st = seq ‘Seq.index ‘ location

34 ed = Seq.drop (location + 1) seq

35 isContinuous sp1 sp2 = Set.size (sp1 ‘intersection ‘ sp2) > 0

36 findGroupNeighbour = Seq.findIndexL (isContinuous st)

37
38 seqSetToSeqList :: Seq (Set Point) -> Seq [Point]

39 seqSetToSeqList = Seq.mapWithIndex (\_ sp -> toAscList sp)

40
41 -- | Get continuous Points in a group , and return all these groups in a

7



list.

42 getCoastalPathes :: Int -> Int -> Set Point -> Seq [Point]

43 getCoastalPathes w h opens = seqSetToSeqList $
44 groupContinuousPs (classifyNeighboursByOpens w h opens) 0

45
46
47 getNeighbourOpenNumPs :: Int -> Int -> Point -> Set Point -> [[Int]] -> Set

Point

48 getNeighbourOpenNumPs w h p opens nums =

49 Set.filter isOpenNum (neighboursOf w h p)

50 where isOpenNum nb = nb ‘member ‘ opens && numAtPoint nums nb /= 0

51
52 -- | The return value is a tuple of the number of all possible mine -

location -

53 -- configurations given the current board and assumptions

54 -- and a map between points on the path , and how many times among all the

55 -- configurations it is safe (not a mine)

56 backtrack :: Int -> Int -> Set Point -> [[Int]] -> [Point] -> Set Point ->

(Map Point Int , Int)

57 backtrack w h opens nums [] mineFlags = (Map.empty , 1)

58 backtrack w h opens nums (x:xs) mineFlags = do

59 let

60 couldbeMine = verify x True

61 couldbeFine = verify x False

62 if couldbeMine && couldbeFine && Prelude.length xs > 5 then

63 runPar $ do

64 spark_m <- spawnP $ backtrack w h opens nums xs (x ‘insert ‘

mineFlags)

65 spark_f <- spawnP $ backtrack w h opens nums xs mineFlags

66 (mine_map , possible_count_m) <- get spark_m

67 (fine_map , possible_count_f) <- get spark_f

68 let fine_map ’ = Map.union fine_map $ Map.singleton x

possible_count_f

69 return (unionWith (+) mine_map fine_map ’, possible_count_m +

possible_count_f)

70 else do

71 let

72 (mine_map , possible_count_m) | couldbeMine = backtrack w h

opens nums xs (x ‘insert ‘ mineFlags)

73 | otherwise = (Map.empty , 0)

74 (fine_map , possible_count_f) | couldbeFine = backtrack w h

opens nums xs mineFlags

75 | otherwise = (Map.empty , 0)

76 fine_map ’ = Map.union fine_map $ Map.singleton x

possible_count_f

77
78 (unionWith (+) mine_map fine_map ’, possible_count_m +

possible_count_f)

79 where nbOpenNumPs p = getNeighbourOpenNumPs w h p opens

nums

8



80 numMineFlagInNeighbours p = Set.size $ Set.filter (‘member ‘

mineFlags) (neighboursOf w h p)

81 numUnknowNeighbours p =

82 Prelude.length $ Prelude.filter (‘member ‘ neighhours) xs

83 where neighhours = neighboursOf w h p

84 verify :: Point -> Bool -> Bool

85 verify p@(r, c) isMine = Set.foldr (\p acc -> acc && verifyNum p

isMine) True (nbOpenNumPs p)

86
87 verifyNum :: Point -> Bool -> Bool

88 verifyNum p isMine = numMineFlagInNeighbours p + fromEnum isMine

<= numAtPoint nums p &&

89 numAtPoint nums p <=

numMineFlagInNeighbours p +

90 fromEnum isMine +

91 numUnknowNeighbours

p

92
93
94 nextMove :: Int -> Int -> Set Point -> [[Int]] -> [Point]

95 nextMove w h opens nums = do

96 let coastalPaths = getCoastalPathes w h opens

97 backtrackResults = map (\path -> backtrack w h opens nums path

Set.empty) $ toList coastalPaths

98 allSafePoints = Prelude.foldr (\(p_c , p_t) l -> l ++

getSafePoints p_c p_t) [] backtrackResults

99 if Prelude.null allSafePoints

100 then let res@(point , acc) = Prelude.foldr (\(p_c , p_t) candi ->

getBestGuess p_c p_t candi) ((0 ,0) ,0/1 :: Float) backtrackResults in [

point]

101 else allSafePoints

102 where

103 getSafePoints :: Map Point Int -> Int -> [Point]

104 getSafePoints p_counts p_total = foldWithKey (\k v l -> if v ==

p_total then k:l else l) [] p_counts

105 getBestGuess :: Map Point Int -> Int -> (Point , Float) -> (Point ,

Float)

106 getBestGuess p_counts p_total candidate = foldWithKey (\k v (cp, cv

) -> if (fraction v p_total > cv) then (k, fraction v p_total) else (cp ,

cv)) candidate p_counts

107 where fraction a b = (fromIntegral a) / (fromIntegral b)

108
109 -- | Change to all possible safe Points to printable string.

110 showAllPossibleSafePoints :: Int -> Int -> Set Point -> [[Int]] -> String

111 showAllPossibleSafePoints w h opens nums =

112 "All safe locations: " ++ (show $ map pointToLoc points) ++ "\n"

113 where points = nextMove w h opens nums

114 pointToLoc (r, c) = (rows !! r, c)

9



6.3 MapGenerator.hs

1 module MapGenerator ( minePoints ) where

2
3 import Util

4
5 import Data.Set ( Set )

6 import Data.Set as Set ( size , insert , empty , member )

7
8 import System.Random ( randomRs , newStdGen , mkStdGen , setStdGen ,

getStdGen , split )

9
10 import System.IO.Unsafe ( unsafePerformIO )

11
12 -- | Generate all the mine Points excluding the initial point.

13 minePoints :: Int -> Int -> Int -> Point -> Set Point

14 minePoints w h count point = collect empty (rands w h)

15 where -- Collect mines non -repetitive Points.

16 collect :: Set Point -> [Point] -> Set Point

17 collect ps (x:xs)

18 | size ps >= min count (w * h - 1) = ps -- the max

available mine positions

19 -- is w * h -

1, where 1 is the

20 -- initial

point

21 | otherwise = if x ‘member ‘ ps || x

== point

22 then collect ps xs

23 else collect (

insert x ps) xs

24
25 -- | Produce an infinite list of random Points

26 rands :: Int -> Int -> [Point]

27 rands w h =

28 let

29 -- for benchmarking use seeded mkStdGen

30 (gw, gh) = split $ unsafePerformIO $ newStdGen -- mkStdGen 10342

31 rs = randomRs (0, w - 1) gw

32 cs = randomRs (0, h - 1) gh

33 in zip cs rs

6.4 LayoutRender.hs

1 module LayoutRender ( drawPlay , drawOver ) where

2
3 import Util

4
5 import Text.Tabular

6 import Text.Tabular.AsciiArt ( render )

10



7
8 import Data.List.Split ( chunksOf )

9
10 import Data.Set ( Set )

11 import Data.Set as Set ( member )

12
13 -- | Put constructor Header on each element in sourceList.

14 rangeHeader :: Int -> [String] -> [Header String]

15 rangeHeader len sourceList = take len $ map Header sourceList

16
17 -- | Draw the game ’s layout according to the convert function and

18 -- the array of number of neighbour mines of each Point.

19 draw :: (Point -> String) -> [[Int]] -> IO ()

20 draw convert nums = putStr $ render id id id gridLayout

21 where (w, h) = dimension nums

22
23 grid :: [[Point ]]

24 grid = chunksOf w $ gridPoints w h

25
26 gridLayout :: Table String String String

27 gridLayout = Table

28 (Group SingleLine

29 [ Group SingleLine $ rangeHeader h [[c] | c <- rows] ])

30 (Group SingleLine

31 [ Group SingleLine $ rangeHeader w [show n | n <- [0..]]

])

32 (map (map convert) grid)

33
34 -- | Draw the game ’s layout according to the open Points and

35 -- the array of number of neighbour mines of each Point.

36 drawPlay opens nums = draw convert nums

37 where -- Convert a Point position to its representation ,

38 -- either black block or number of neighbour mines.

39 convert :: Point -> String

40 convert p | p ‘member ‘ opens = show $ numAtPoint nums p

41 | otherwise = [’\x2588 ’]

42
43 -- | Draw the game over layout.

44 drawOver :: Set Point -> [[Int]] -> IO ()

45 drawOver minePs nums = draw convert nums

46 where -- Convert a Point position to its representation in

47 -- String , either black block or number of neighbour mines.

48 convert :: Point -> String

49 convert p | p ‘member ‘ minePs = "*"

50 | otherwise = show $ numAtPoint nums p

6.5 Util.hs

1 module Util where

2

11



3 import Data.Set ( Set )

4 import Data.Set as Set ( fromList , member , filter )

5
6 type Point = (Int , Int)

7
8 -- | Generate a list of Point (r, c) according to the width and height

9 -- of the layout in the game , with r is the index of row

10 -- and c is the index of column.

11 gridPoints :: Int -> Int -> [Point]

12 gridPoints w h = [(r, c) | r <- [0 .. h - 1], c <- [0 .. w - 1]]

13
14 -- | Get tuple (width , height) from a two dimension list.

15 dimension :: [[Int]] -> (Int , Int)

16 dimension a = (length $ head a, length a)

17
18 rows = [’A’..’Z’]

19
20 -- | Get neighbours of a Point in a Set.

21 neighboursOf :: Int -> Int -> Point -> Set Point

22 neighboursOf w h (r, c) = Set.filter (‘member ‘ gridPs) possibleNeighbours

23 where gridPs = fromList $ gridPoints w h

24 possibleNeighbours = fromList [(r, c - 1), (r, c + 1),

25 (r + 1, c), (r + 1, c + 1), (r +

1, c - 1),

26 (r - 1, c), (r - 1, c + 1), (r -

1, c - 1)]

27
28 numAtPoint nums (r, c) = nums !! r !! c

12


