

Maze	Generation:	Recursive	Division	
	

Linyu	Li,	Yanhao	Li	
{ll3465,	yl4734}@columbia.edu	

	
cs4995	Final	Project	

Dec	19,	2021

	
1					Introduction
This	paper	presents	a	parallelized	maze	generator	implemented	in	Haskell.	There	
are	several	algorithms	to	generate	a	maze,	such	as	depth-first	search,	Kruskal’s	
algorithm,	Prim’s	algorithm.	However,	most	of	the	algorithms	are	hard	to	run	in	
parallel.	In	order	to	demonstrate	the	parallelization	techniques	in	Haskell,	we	
decided	to	use	another	algorithm,	which	is	known	as	the	Recursive	Division	
algorithm.	It	is	the	fastest	maze	generation	algorithm	without	directional	biases	
thanks	to	its	parallelism,	each	sub-maze	could	be	processed	at	finer	and	finer	levels	
of	detail.	However,	compared	to	other	more	convoluted	maze	generation	
algorithms,	the	output	maze	usually	contains	long	straight	walls	crossing	the	space	
and	looks	less	complicated.	

2					Recursive	Division	Algorithm
The	Recursive	Division	works	as	follows:

1. Initialize	the	maze	with	no	walls	inside,	i.e.	only	a	frame.	

	
	
	

2. Divide	the	frame	into	four	separate	spaces	by	adding	two	randomly	
positioned	walls,	one	vertically	and	one	horizontally.	

	
	
	

3. Randomly	selected	three	from	the	four	spaces	and	connected	them	together	
by	opening	three	randomly	positioned	passages	on	the	

walls. 	
4. Recursively	repeat	the	process	on	the	sub	maze	until	all	sub	maze	can’t	be	

divided	anymore.		

2.1					Data	Types
Maze	could	be	abstracted	as	a	grid,	each	passage	in	the	maze	could	be	seen	as	a	cell	
in	the	grid,	but	there	are	usually	two	ways	to	represent	the	walls	in	the	maze.	One	is	
using	lines	in	the	grid	to	represent	the	walls,	whereas	the	other	way	represents	
walls	also	as	cells.	In	our	implementation,	we	represent	both	passage	and	wall	using	
the	cells.

	

We	defined	two	main	data	types	for	our	implementation,	Maze	and	Wall.
The	Maze	type	is	the	abstract	of	the	generated	maze,	with	the	property	width	and	
height	represented	by	m	and	n.	It	also	contains	a	set	of	Wall	types,	representing	the	
walls	in	the	maze.
data Maze = Maze {
 m :: Int, -- number of matrix rows
 n :: Int, -- number of matrix cols
 walls :: Set W.Wall
}

instance Show Maze where
 show (Maze m' n' walls') =
 unlines maze
 where
 maze = [rowToStrng r| r <- [0 .. m'-1]]
 rowToStrng r = [if isWall r c then '#' else ' '| c <- [0 .. n'-
1]]
 isWall r c = W.Wall r c `elem` walls'

instance NFData Maze where
 rnf (Maze m' n' walls') = rnf m' `seq` rnf n' `seq` rnf walls'

The	data	type	Wall	has	the	properties	r	and	c	representing	the	row	and	column	
number	of	this	wall	block	respectively.
data Wall = Wall {
 r :: Int,
 c :: Int
} deriving (Show, Eq, Ord)

instance NFData Wall where
 rnf (Wall r c) = rnf r `seq` rnf c

2.2					Implementation
The	entry	point	of	the	algorithm	is	the	function	generateWalls,	which	generates	
walls	in	the	area	defined	by	four	integers	(x0,	y0),	(x1,	y1)	representing	the	top	left	
and	bottom	right	corners.

In	this	function,	we	split	the	given	area	into	four	sub	mazes	and	solved	each	of	them	
individually.	In	the	end,	we	return	the	result	by	combining	the	four	solutions.

-- Given an frame, generate walls inside the frame
-- top left wall cell: (tr, tc)
-- bottom right wall cell: (br, bc)
generateWalls :: RandomGen g => Int -> Int -> Int -> Int -> g ->
Set W.Wall
generateWalls tr tc br bc g
 | bc - tc < 4 || br - tr < 4 = empty
 | otherwise = walls
 `union` topLeft
 `union` topRight
 `union` bottomLeft
 `union` bottomRight
 where
 (g1, g2) = split g
 (g3, g4) = split g1
 (g5, g6) = split g2
 (g7, g8) = split g3
 (randomRow, _) = pickRandom [(tr + 2), (tr + 4)..(br - 2)]
g1
 (randomCol, _) = pickRandom [(tc + 2), (tc + 4)..(bc - 2)]
g2
 walls = verticalWalls `union` horizontalWalls `difference`
holes

 verticalWalls = fromList [W.Wall {W.r = r, W.c = randomCol}
| r <- [(tr + 1)..(br - 1)]]
 horizontalWalls = fromList [W.Wall {W.r = randomRow, W.c =
c} | c <- [(tc + 1)..(bc - 1)]]
 topLeft = generateWalls tr tc randomRow randomCol g3
 topRight = generateWalls tr randomCol randomRow bc g4
 bottomLeft = generateWalls randomRow tc br randomCol g5
 bottomRight = generateWalls randomRow randomCol br bc g6
 (holes, _) = getHoles tr tc br bc randomRow randomCol g7

2.3					Results
Below	are	the	screenshots	of	the	visualization	of	the	generated	maze,	the	program	
also	accepts	the	third	parameter,	which	is	a	seed	integer	provided	by	users.	The	
idea	is	when	the	given	seed	is	the	same,	the	maze	generated	will	be	the	same	as	
well.
	

3					Parallelization

For	the	parallelization,	we	firstly	checked	our	maze	generation	algorithms.	Because	
we	used	recursive	division,	this	algorithm	keeps	dividing	the	frames	with	a	
horizontal	wall	and	a	vertical	wall.	During	this	process,	we	find	the	possibility	of	
parallelization	for	the	algorithm.

The	first	step	we	conducted	our	experiment	is	that	we	run	the	algorithm	in	a	
sequential	way	to	generate	a	5000	*	5000	maze	and	check	the	result.	

After	finding	the	total	time	is	about	56s,	we	tried	to	use	the	first	method	to	
implement	the	parallelization.	The	first	method	is	using	par	in	the	Control.Parallel	
package.

We	can	find	that	using	par	and	running	the	code	on	8	cores,	that	total	time	
decreased	to	about	37s.	

Then,	we	tried	the	Strategy	and	used	runEval	and	rpar	to	do	the	parallelization.	The	
result	is	below.

We	can	see	that	using	the	rpar	and	running	the	code	on	8	cores,	the	total	time	
decreased	to	about	26s,	far	from	the	original	sequential	time	of	56s.	But,	we	still	
have		a	problem	that	the	GC	time	is	too	much	and	there	are	a	lot	of	unnecessary	
sparks	generated	during	the	code	running.	To	solve	this	problem,	we	tried	to	control	

the	depth	to	parallel	to	a	certain	depth.	We	implemented	the	depth	control	like	
below.

generateHWalls	0	tr	tc	br	bc	seed	=	generateWallsOriginial	tr	tc	br	bc	seed
generateWalls	deep	tr	tc	br	bc	seed
	--	|	trace	("generateHWalls	for	the	space:	"	++	show	(tx,	ty,	bx,	by))	False	=	
undefined
	--	|	trace	("holes:	"	++	show	holes)	False	=	undefined
	|	bc	-	tc	<	4	||	br	-	tr	<	4	=	(empty,	seed)
	|	otherwise	=	(walls
			`union`	runEval	(rpar	(topLeft	`union`	topRight))
			`union`	runEval	(rpar	(bottomLeft	`union`	bottomRight))
			,	newSeed5)
	where
			(randomRow,	newRowSeed)	=	pickRandom	[(tr	+	2),	(tr	+	4)..(br	-	2)]	seed
			(randomCol,	newColSeed)	=	pickRandom	[(tc	+	2),	(tc	+	4)..(bc	-	2)]	
newRowSeed
			walls	=	verticalWalls	`union`	horizontalWalls	`difference`	holes
			verticalWalls	=	fromList	[W.Wall	{W.r	=	r,	W.c	=	randomCol}	|	r	<-	[(tr	+	1)..(br	-	
1)]]
			horizontalWalls	=	fromList	[W.Wall	{W.r	=	randomRow,	W.c	=	c}	|	c	<-	[(tc	+	
1)..(bc	-	1)]]
			(topLeft,	newSeed1)	=	generateWalls	(deep	-	1)	tr	tc	randomRow	randomCol	seed
			(topRight,	newSeed2)	=	generateWalls	(deep	-	1)	tr	randomCol	randomRow	bc	
seed
			(bottomLeft,	newSeed3)	=	generateWalls	(deep	-	1)	randomRow	tc	br	randomCol	
seed
			(bottomRight,	newSeed4)	=	generateWalls	(deep	-	1)	randomRow	randomCol	br	
bc	seed
			(holes,	newSeed5)	=	getHoles	tr	tc	br	bc	randomRow	randomCol	seed

generateWallsOriginial	tr	tc	br	bc	seed
	--	|	trace	("generateHWalls	for	the	space:	"	++	show	(tx,	ty,	bx,	by))	False	=	
undefined
	--	|	trace	("holes:	"	++	show	holes)	False	=	undefined
 |	bc	-	tc	<	4	||	br	-	tr	<	4	=	(empty,	seed)
	|	otherwise	=	(walls
			`union`	runEval	(rpar	(topLeft	`union`	topRight))
			`union`	runEval	(rpar	(bottomLeft	`union`	bottomRight))
			,	newSeed5)
	where
			(randomRow,	newRowSeed)	=	pickRandom	[(tr	+	2),	(tr	+	4)..(br	-	2)]	seed

			(randomCol,	newColSeed)	=	pickRandom	[(tc	+	2),	(tc	+	4)..(bc	-	2)]	
newRowSeed
			walls	=	verticalWalls	`union`	horizontalWalls	`difference`	holes
			verticalWalls	=	fromList	[W.Wall	{W.r	=	r,	W.c	=	randomCol}	|	r	<-	[(tr	+	1)..(br	-	
1)]]
			horizontalWalls	=	fromList	[W.Wall	{W.r	=	randomRow,	W.c	=	c}	|	c	<-	[(tc	+	
1)..(bc	-	1)]]
			(topLeft,	newSeed1)	=	generateWallsOriginial	tr	tc	randomRow	randomCol	seed
			(topRight,	newSeed2)	=	generateWallsOriginial	tr	randomCol	randomRow	bc	seed
			(bottomLeft,	newSeed3)	=	generateWallsOriginial	randomRow	tc	br	randomCol	
seed
			(bottomRight,	newSeed4)	=	generateWallsOriginial	randomRow	randomCol	br	bc	
seed
			(holes,	newSeed5)	=	getHoles	tr	tc	br	bc	randomRow	randomCol	seed			

After control the depth of the code, we found that the sparks generated decreased a lot.

5					Code	Listing

Main.hs

module Main where
import System.Exit(die);
import System.Environment (getArgs, getProgName)

import System.Random (getStdGen)
import System.CPUTime
import Generator
import Control.DeepSeq

main :: IO Integer
main = do
 args <- getArgs
 seed <- getStdGen
 case args of
 [deep, width, height] -> do
 start <- getCPUTime
 let r = mazeGenerator (read deep) (read width) (read
height) seed
 end <- r `deepseq` getCPUTime
 return (end - start)

 _ -> do
 progName <- getProgName
 die $ "Usage: " ++ progName ++ " <width> <height>"

Generator.hs	(using	rpar	to	parallelize)

module Generator where

import qualified Maze as M
import qualified Wall as W
import Debug.Trace
import Data.Bifunctor
import Control.Monad
import Data.Array.IO
import Data.Set (Set, fromList, union, empty, difference)
import System.Random
import Control.Parallel.Strategies

-- mazeGenerator :: RandomGen g => Int -> Int -> g -> M.Maze
mazeGenerator deep width height seed =
 M.Maze {
 M.m = m,
 M.n = n,

 M.walls = initializeFrame m n `union` fst (generateWalls deep
0 0 (m - 1) (n - 1) seed)
 -- M.walls = initializeFrame m n
 }
 where
 m = width * 2 + 1 -- number of matrix rows
 n = height * 2 + 1 -- number of matrix cols

initializeFrame :: Int -> Int -> Set W.Wall
initializeFrame m n = fromList frame

 where
 frame = [W.Wall {W.r = r, W.c = c} |
 r <- [0..m - 1],
 c <- [0..n - 1],
 r == 0 || r == m - 1 || c == 0 || c == n - 1,
 (r, c) /= (0, 1), -- entrace
 (r, c) /= (m - 1, n - 2)] -- exit

-- Given an frame, generate walls inside the frame
-- top left wall cell: (tr, tc)
-- bottom right wall cell: (br, bc)

generateHWalls 0 tr tc br bc seed = generateWallsOriginial tr tc
br bc seed
generateWalls deep tr tc br bc seed
 -- | trace ("generateHWalls for the space: " ++ show (tx, ty,
bx, by)) False = undefined
 -- | trace ("holes: " ++ show holes) False = undefined
 | bc - tc < 4 || br - tr < 4 = (empty, seed)
 | otherwise = (walls
 `union` runEval (rpar (topLeft `union` topRight))
 `union` runEval (rpar (bottomLeft `union` bottomRight))
 , newSeed5)
 where
 (randomRow, newRowSeed) = pickRandom [(tr + 2), (tr + 4)..(br
- 2)] seed
 (randomCol, newColSeed) = pickRandom [(tc + 2), (tc + 4)..(bc
- 2)] newRowSeed
 walls = verticalWalls `union` horizontalWalls `difference`
holes

 verticalWalls = fromList [W.Wall {W.r = r, W.c = randomCol} |
r <- [(tr + 1)..(br - 1)]]
 horizontalWalls = fromList [W.Wall {W.r = randomRow, W.c = c}
| c <- [(tc + 1)..(bc - 1)]]
 (topLeft, newSeed1) = generateWalls (deep - 1) tr tc
randomRow randomCol seed
 (topRight, newSeed2) = generateWalls (deep - 1) tr randomCol
randomRow bc seed

			(bottomLeft,	newSeed3)	=	generateWalls	(deep	-	1)	randomRow	tc	br	randomCol	
seed
 (bottomRight, newSeed4) = generateWalls (deep - 1) randomRow
randomCol br bc seed
 (holes, newSeed5) = getHoles tr tc br bc randomRow randomCol
seed

generateWallsOriginial tr tc br bc seed
 -- | trace ("generateHWalls for the space: " ++ show (tx, ty,
bx, by)) False = undefined
 -- | trace ("holes: " ++ show holes) False = undefined
 | bc - tc < 4 || br - tr < 4 = (empty, seed)
 | otherwise = (walls
 `union` runEval (rpar (topLeft `union` topRight))
 `union` runEval (rpar (bottomLeft `union` bottomRight))
 , newSeed5)
 where
 (randomRow, newRowSeed) = pickRandom [(tr + 2), (tr + 4)..(br
- 2)] seed
 (randomCol, newColSeed) = pickRandom [(tc + 2), (tc + 4)..(bc
- 2)] newRowSeed
 walls = verticalWalls `union` horizontalWalls `difference`
holes
 verticalWalls = fromList [W.Wall {W.r = r, W.c = randomCol} |
r <- [(tr + 1)..(br - 1)]]
 horizontalWalls = fromList [W.Wall {W.r = randomRow, W.c = c}
| c <- [(tc + 1)..(bc - 1)]]
 (topLeft, newSeed1) = generateWallsOriginial tr tc randomRow
randomCol seed
 (topRight, newSeed2) = generateWallsOriginial tr randomCol
randomRow bc seed
 (bottomLeft, newSeed3) = generateWallsOriginial randomRow tc
br randomCol seed

 (bottomRight, newSeed4) = generateWallsOriginial randomRow
randomCol br bc seed
 (holes, newSeed5) = getHoles tr tc br bc randomRow randomCol
seed

getHoles :: RandomGen g => Int -> Int -> Int -> Int -> Int ->
Int -> g -> (Set W.Wall, g)
getHoles tr tc br bc rr rc seed =
 (fromList $ map (choices !!) $ take 3 $ shuffle seed [0..3],
bottomSeed)
 where
 randomPick l seed = l !! fst (randomR (0, length l - 1) seed)
 choices = [top, left, right, bottom]
 (top, topSeed) = pickRandom [W.Wall {W.r = r, W.c = rc}| r <-
[(tr + 1), (tr + 3)..(rr - 1)]] seed
 (left, leftSeed) = pickRandom [W.Wall {W.r = rr, W.c = c}| c
<- [(tc + 1), (tc + 3)..(rc - 1)]] topSeed
 (right, rightSeed) = pickRandom [W.Wall {W.r = rr, W.c = c}|
c <- [(rc + 1), (rc + 3)..(bc - 1)]] leftSeed
 (bottom, bottomSeed) = pickRandom [W.Wall {W.r = r, W.c =
rc}| r <- [(rr + 1), (rr + 3)..(br - 1)]] rightSeed

pickRandom :: RandomGen g => [a] -> g -> (a, g)
pickRandom l seed = Data.Bifunctor.first (l !!) (randomR (0,
length l - 1) seed)

shuffle :: RandomGen g => g -> [a] -> [a]
shuffle gen [] = []
shuffle gen list = randomElem : shuffle newGen newList
 where
 randomTuple = randomR (0, length list - 1) gen
 randomIndex = fst randomTuple
 newGen = snd randomTuple
 randomElem = list !! randomIndex
 newList = take randomIndex list ++ drop (randomIndex+1)
list

Generator.hs	(Sequential)

module Generator where

import qualified Maze as M
import qualified Wall as W
import Debug.Trace
import Data.Bifunctor
import Control.Monad
import Data.Array.IO
import Data.Set (Set, fromList, union, empty, difference)
import System.Random

mazeGenerator :: RandomGen g => Int -> Int -> g -> M.Maze
mazeGenerator width height seed =
 M.Maze {
 M.m = m,
 M.n = n,
 M.walls = initializeFrame m n `union` fst (generateWalls 0 0
(m - 1) (n - 1) seed)
 -- M.walls = initializeFrame m n
 }
 where
 m = width * 2 + 1 -- number of matrix rows
 n = height * 2 + 1 -- number of matrix cols

initializeFrame :: Int -> Int -> Set W.Wall
initializeFrame m n = fromList frame
 where
 frame = [W.Wall {W.r = r, W.c = c} |
 r <- [0..m - 1],
 c <- [0..n - 1],
 r == 0 || r == m - 1 || c == 0 || c == n - 1,
 (r, c) /= (0, 1), -- entrace
 (r, c) /= (m - 1, n - 2)] -- exit

-- Given an frame, generate walls inside the frame
-- top left wall cell: (tr, tc)
-- bottom right wall cell: (br, bc)
generateWalls :: RandomGen g => Int -> Int -> Int -> Int -> g ->
(Set W.Wall, g)
generateWalls tr tc br bc seed
 -- | trace ("generateHWalls for the space: " ++ show (tx, ty,

bx, by)) False = undefined
 -- | trace ("holes: " ++ show holes) False = undefined
 | bc - tc < 4 || br - tr < 4 = (empty, seed)
 | otherwise = (walls
 `union` topLeft
 `union` topRight
 `union` bottomLeft
 `union` bottomRight, newSeed5)
 where
 (randomRow, newRowSeed) = pickRandom [(tr + 2), (tr + 4)..(br
- 2)] seed
 (randomCol, newColSeed) = pickRandom [(tc + 2), (tc + 4)..(bc
- 2)] newRowSeed
 walls = verticalWalls `union` horizontalWalls `difference`
holes
 verticalWalls = fromList [W.Wall {W.r = r, W.c = randomCol} |
r <- [(tr + 1)..(br - 1)]]
 horizontalWalls = fromList [W.Wall {W.r = randomRow, W.c = c}
| c <- [(tc + 1)..(bc - 1)]]
 (topLeft, newSeed1) = generateWalls tr tc randomRow randomCol
seed
 (topRight, newSeed2) = generateWalls tr randomCol randomRow
bc seed
 (bottomLeft, newSeed3) = generateWalls randomRow tc br
randomCol seed
 (bottomRight, newSeed4) = generateWalls randomRow randomCol
br bc seed
 (holes, newSeed5) = getHoles tr tc br bc randomRow randomCol
seed

getHoles :: RandomGen g => Int -> Int -> Int -> Int -> Int ->
Int -> g -> (Set W.Wall, g)
getHoles tr tc br bc rr rc seed =
 (fromList $ map (choices !!) $ take 3 $ shuffle seed [0..3],
bottomSeed)
 where
 randomPick l seed = l !! fst (randomR (0, length l - 1) seed)
 choices = [top, left, right, bottom]
 (top, topSeed) = pickRandom [W.Wall {W.r = r, W.c = rc}| r <-
[(tr + 1), (tr + 3)..(rr - 1)]] seed
 (left, leftSeed) = pickRandom [W.Wall {W.r = rr, W.c = c}| c

<- [(tc + 1), (tc + 3)..(rc - 1)]] topSeed
 (right, rightSeed) = pickRandom [W.Wall {W.r = rr, W.c = c}|
c <- [(rc + 1), (rc + 3)..(bc - 1)]] leftSeed
 (bottom, bottomSeed) = pickRandom [W.Wall {W.r = r, W.c =
rc}| r <- [(rr + 1), (rr + 3)..(br - 1)]] rightSeed

pickRandom :: RandomGen g => [a] -> g -> (a, g)
pickRandom l seed = Data.Bifunctor.first (l !!) (randomR (0,
length l - 1) seed)

shuffle :: RandomGen g => g -> [a] -> [a]
shuffle gen [] = []
shuffle gen list = randomElem : shuffle newGen newList
 where
 randomTuple = randomR (0, length list - 1) gen
 randomIndex = fst randomTuple
 newGen = snd randomTuple
 randomElem = list !! randomIndex
 newList = take randomIndex list ++ drop (randomIndex+1)
list

Maze.hs

module Maze where
import qualified Wall as W
import Data.Set (Set)
import Control.DeepSeq

data Maze = Maze {
 m :: Int, -- number of matrix rows
 n :: Int, -- number of matrix cols
 walls :: Set W.Wall
}

instance Show Maze where
 show (Maze m' n' walls') =
 unlines maze
 where
 maze = [rowToStrng r| r <- [0 .. m'-1]]
 rowToStrng r = [if isWall r c then '#' else ' '| c <- [0 ..

n'-1]]
 isWall r c = W.Wall r c `elem` walls'

instance NFData Maze where
 rnf (Maze m' n' walls') = rnf m' `seq` rnf n' `seq` rnf walls'

Wall.hs

module Wall where
import Control.DeepSeq

data Wall = Wall {
 r :: Int,
 c :: Int
} deriving (Show, Eq, Ord)

instance NFData Wall where
 rnf (Wall r c) = rnf r `seq` rnf c

