
Master Minds: The Report

Xinhao Su
xs2413

David Xu
dx2199

December 22, 2021

1 Problem Overview

Master Mind is a classic codebreaking game first played in 1970. Gameplay goes as follows:

1. The “codemaker” picks four pegs and places them in order. This is the “solution code”. Each peg
can be one of six different colors and colors can be repeated between pegs.

2. The “codebreaker” then has 8 turns to guess this code. On each turn:

(a) The codebreaker makes a guess of the code (four pegs in order, each having one of the six
colors).

(b) The codemaker responds with feedback using some number of black and white pegs. Each
black peg means a peg of the guess is both the right color and in the right position. Each
white peg means a peg of the guess is the right color but in the wrong position.

(c) Using this information, the codebreaker can formulate his/her next guess.

3. The game ends after the code has been guessed (the codebreaker wins) or eight incorrect guesses
have been made (the codemaker wins), whichever occurs first.

A photo of a physical game board is show below, albeit with slightly different colors.

2 Formal Definition

This game can be formalized as The Mastermind Problem. Given a set of guesses and their corresponding
feedback, can we determine what solutions code(s) would produce such behavior? This is effectively a
multi-dimensional search problem which has been proven to be NP-Complete1.

1Stuckman, J., & Zhang, G. Q. (2005). Mastermind is NP-complete. arXiv preprint cs/0512049.

1

3 Algorithm

Donald Knuth proposed the “Five-Guess Algorithm2”, which was named as such because it will always
determine the correct code using only at most five of the eight allowable guesses. The algorithm works
as follows:

S.1 Generate all possible codes. Call this S, representing the universe of possible codes. Here, |S| =
64 = 1296.

S.2 Create a set of possible solutions P . At the start, P = S.

S.3 Choose an initial guess g0. This can be hard-coded or randomly selected from P , as no information
about the solution code has been obtained yet.

S.4 Play guess g0 and obtain a response r from the codemaker.

S.5 Filter P to remove all codes which could not possibly be the solution based on this response.

� For a code to possibly be the actual solution, its response to g0 must also be exactly r.

S.6 Select the best next guess g1 from S using a minmax algorithm: minimize the maximum possible
number of remaining codes in P after this guess.

� The maximum possible number of remaining codes in P after a guess g2 can be calculated
by determining the response of each code in P to g2. The response which appears with the
greatest frequency is the worst case (resulting in the largest P after filtering).

� In the case of a tie between codes, prefer a code which is still a possible solution, i.e. it is in
P . As a final tiebreaker, select the numerically lowest code.

S.7 Repeat from Step S.4 with guess g1. Repeat until the solution is found (|P | = 1).

4 Extension

It is desirable to increase the computational difficulty of the problem so as to produce more reliable
timing results. A program running over a longer amount of time will allow for recorded times to be more
robust against random noise. As such, we increase the search space of the algorithm by extending the
game to use c colors and h holes (previously, c = 6 and h = 4). As such, the universe of codes expands:
|S| = ch. For performance analyses in the remainder of this report, c = 10 and h = 4 are selected,
resulting in |S| = 10, 000.

5 Sequential Implementation

Segments of the sequential implementation are highlighted within this section. For a full code listing,
see Appendix: Code. Among other things, the appendix includes code allowing a human codemaker to
play against the algorithm.

5.1 Datatypes

type ResponsePegs = (Int, Int) -- (#black, #white)

The response providing feedback about a code is presented as a pair consisting of the number of black
pegs and number of white pegs in the response.

type Code = [Int]

A code is a collection of colored pegs. Each peg is an Int which correponds to a color in set [1..c].

type Possibility = (Int, Bool, Code) -- (Score, Invalid, Code)

A Possibility is a candidate for the next guess. The score represents the size of P after this guess in
the worst case. The invalid flag tracks whether the code is a possible solution (in P) or not. Note that
finding the minimum Possibility will perform the next guess selection process including tiebreakers as
described in Section 3.

2Knuth, D. E. (1976). The computer as master mind. Journal of Recreational Mathematics, 9 (1), 1-6.

2

5.2 Generating a Response

guessResult :: Code -> Code -> ResponsePegs

guessResult ans guess = (numBlack, numWhite)

where numBlack = length $ filter id $ zipWith (==) ans guess

numWhite = sum (map minCodeCount $ nub guess) - numBlack

minCodeCount v = min (count v ans) (count v guess)

count v ls = length $ filter (==v) ls

The number of black pegs (numBlack) can be calculated by looking for pegs in the same position with
the same color. For determining the number of white pegs (numWhite), each color is iterated over. The
minimum number of times that color appears in both codes corresponds to the number of white pegs
that color will generate (e.g., three green pegs in the guess and two green pegs in the solution means two
white pegs are generated). However, the number of black pegs must be subtracted from this sum (as if a
peg is both the right color and in the right position, it will generate a black peg instead of a white peg).

5.3 Scoring a Candidate Guess

scoreGuess :: CodeSet -> Code -> Possibility

scoreGuess possible code = (score, not valid, code)

where

valid = code `elem` possible

allResponses = map (guessResult code) possible

score = getMaxCount allResponses

getMaxCount xs = maximum $ map snd $ getCounts xs

incCount o [] = [(o, 1)]

incCount o (x@(v, c) : xs)

| v == o = (v, c + 1) : xs

| otherwise = x : incCount o xs

getCounts xs = foldr incCount [] xs

Given the set of remaining possibilities P (possible) and some candidate guess code, the objective is
to assign a score to the code representing the maximum size of P after this guess in the worst case,
as described in Section 3. The guessResult function is used to determine what the codemaker would
respond to g in the case that each potential solution was the actual solution. The getCounts function is
used to count how many times each response occurs. The maximum count, determined by getMaxCount,
corresponds to the score.

5.4 Filtering the Possible Set

filterCodeSet :: CodeSet -> Code -> ResponsePegs -> CodeSet

filterCodeSet set guess response =

filter ((response ==) . guessResult guess) set

Once a guess is made and a response is received from the codemaker, some of the possible solutions in
P can be ruled out. Specifically, solutions which produce a response to the guess different from the one
received cannot be the actual solution.

5.5 Playing the Game

playMastermind :: Code -> Code -> Int -> CodeSet -> CodeSet -> IO Int

playMastermind guess solution k fullSet possibleSet = do

putStrLn $ "Guessing: " ++ show guess

let response@(blk, wht) = guessResult guess solution

putStrLn $

"Response: " ++ show blk ++ " black and "

++ show wht ++ " white"

if blk == length guess then do

putStrLn $ "Solved: " ++ show guess

return k

3

else do

let possibleSet' = filterCodeSet possibleSet guess response

let possibilities = map (scoreGuess possibleSet') fullSet

let (_, _, nextGuess) = minimum possibilities

playMastermind nextGuess solution (k + 1) fullSet possibleSet'

Each turn, a guess is played by the algorithm (codebreaker) and a response received from the codemaker.
If a number of black pegs equal to the number of holes is returned, the code has been found! In some
cases, the algorithm may luckily guess the correct solution without having to reduce |P | to 1. Otherwise,
P is filtered using the response and then the universe of possible codes S is searched for the best next
guess.

5.6 Performance

It is important to keep in mind that the performance of the algorithm is dependent on both the initial
guess and the solution. For example, consider the trivial case where the initial guess is equal to the
solution. The algorithm will succeed without having to search S at all. For this report, performance was
analyzed on a 2018 MacBook Pro with 8 logical cores. The game was configured to use 10 colors and 4
holes. A shell script was used to feed input to the program, removing the need for human interaction.
Using an initial guess of 1111 and a solution of 2613, the algorithm succeeded in 14 seconds (note that
timings are rounded to the nearest second to show proper significance, as timings vary slightly between
equivalent program executions). Using a solution of 8765 instead results in a 50 second execution time
as shown below.

5.7 Fixing that Bump

One may notice that towards the end of the execution above, a sudden increase in activity occurs.
Analysis using Threadscope shows that this is due to stack overflows, causing the computation to stop and
start again multiple times. It was determined that this was largely because of the minimum and maximum

functions which are evaluated on lists of size ch. This necessitates the construction and evalulation of a
large redex, causing a stack overflow3. To avoid this behavior, minimum was replaced with foldl1' min.
A corresponding change was made replacing maximum with foldl1' max. Doing so alleviates the stack
overflow issue (although an activity increase at the end still occurs due to computation).

3https://stackoverflow.com/questions/40948153/find-min-elements-index-of-a-large-list-in-haskell

4

6 Parallelization

A variety of techniques were applied to parallelize the algorithm. The most successful attempts are
discussed within this section.

6.1 Control.Monad.Par(parMap)

playMastermindParMap :: Code -> Code -> Int -> CodeSet -> CodeSet -> IO Int

playMastermindParMap guess solution k fullSet possibleSet = do

putStrLn $ "Guessing: " ++ show guess

let response@(blk, wht) = guessResult guess solution

putStrLn $

"Response: " ++ show blk ++ " black and "

++ show wht ++ " white"

if blk == length guess then do

putStrLn $ "Solved: " ++ show guess

return k

else do

let possibleSet' = filterCodeSet possibleSet guess response

let possibilities = runPar $ parMap (scoreGuess possibleSet') fullSet

let (_, _, nextGuess) = minimum possibilities

playMastermindParMap nextGuess solution (k + 1) fullSet possibleSet'

The main change here is that the map over candidate guesses has been replaced with parMap. The
result is a 21 second runtime on 8 cores, representing a performance improvement factor of 2.38.

Using different numbers of cores affected this performance, as shown in the graph below. As seen,
increasing from 1 to 4 cores caused a significant performance improvement. Increasing past 4 cores
results in minimal further improvement. This is likely because our algorithm is largely CPU-bound and
the machine only has 4 physical cores mapped to 8 logical cores. Increasing past 8 cores results in reduced
performance, as in that case there are more threads than logical cores.

5

At attempt was also made at using parMap within the scoreGuess function to parallelize the eval-
uation of each guess-solution pair. However, the result was extremely slow performance and a 1.2 GB
event log. Evidently, too many sparks were created.

Even with the successful parallelization above, a large number of sparks are created.

6.2 Chunks

Aiming to create fewer sparks, we designed a parallelization strategy which splits the candidate codes
into m chunks and then parallelizes computation over those chunks.

bestFromChunk :: CodeSet -> CodeSet -> Possibility

bestFromChunk possibleSet chunk = foldl1' min $ map (scoreGuess possibleSet) chunk

-- In chunks

playMastermindChunkStrategy :: Int -> Code -> Code -> Int -> CodeSet -> CodeSet -> IO Int

playMastermindChunkStrategy numChunks guess solution k fullSet possibleSet = do

putStrLn $ "Guessing: " ++ show guess

let response@(blk, wht) = guessResult guess solution

putStrLn $

"Response: " ++ show blk ++ " black and "

++ show wht ++ " white"

if blk == length guess then do

putStrLn $ "Solved: " ++ show guess

return k

else do

let possibleSet' = filterCodeSet possibleSet guess response

let chunks = splitToChunks numChunks fullSet -- TODO: Tune the number of chunks

let possibilities = map (bestFromChunk possibleSet') chunks `using` parList rseq

let (_, _, nextGuess) = foldl1' min possibilities

playMastermindChunkStrategy numChunks nextGuess solution (k + 1) fullSet possibleSet'

6

Notice that this strategy, aside from splitting the scoring of candidate codes into parallelized chunks,
also selects the best code from each chunk. Then the best of these best-in-chunk codes is selected as the
next guess. Doing so reduces the peak memory usage of the algorithm, contributing to the improved
performance. Below, a Threadscope screenshot with m = 64 chunks is shown. The run time is 17
seconds, representing a performance improvement of 2.94 times over the sequential implementation and
1.18 times over the parMap implementation running on 8 cores. Notice however that the computational
load is not balanced evenly between cores.

Increasing the number of chunks allows for better load balancing, increasing performance. The
screenshot below shows the distribution of work between cores with m = 512 chunks. The algorithm is
able to finish in 15 seconds.

Increasing m past 512 results in minimal performance gains, as the load is already evenly balanced.
Notice also that for m < 8, performance deteriorates rapidly as some logical cores are left unused.

7

It is also interesting to consider that on later turns, the possible solution set P has shrunk. Thus,
fewer chunks should be necessary for proper load balancing. An implementation was tested with various
m which split computation into m

2k
chunks on turn k, however performance was not improved. Scaling

factors of 1.2 and 1.5 were also tried. Again, there was no improvement over using the constant chunking.

7 Conclusion

To conclude, the chunked strategy was able to parallelize the Master Mind algorithm to run almost 3 times
faster than the sequential version. We found that for our test setup, splitting computation at each turn
into 512 chunks allowed for maximum performance. However, we suspect that the optimal number will
differ based on the number of computational cores available. The game configuration (number of colors
and holes) may also have an impact on determining how many chunks should be used. An interesting
further investigation would be to have the algorithm adaptively determine how many chunks to use
at each turn based on the game configuration, number of possible solutions remaining, and available
hardware resources.

8

8 Appendix: Code

{-

- Type Definition

-}

type ResponsePegs = (Int, Int) -- (#black, #white)

type Code = [Int]

type CodeSet = [Code]

type Possibility = (Int, Bool, Code) -- (Score, Invalid, Code)

{-

- Utility Function

-}

parseCode :: String -> Code

parseCode str = (map read $ words str) :: [Int]

generateCodeSet :: (Eq a, Num a) => [a] -> a -> [[a]]

generateCodeSet [] _ = error "Give me a non-empty list"

generateCodeSet list hole

| hole == 1 = [[x] | x <- list]

| otherwise = [x:xs | x <- list, xs <- generateCodeSet list $ hole - 1]

guessResult :: Code -> Code -> ResponsePegs

guessResult ans guess = (numBlack, numWhite)

where numBlack = length $ filter id $ zipWith (==) ans guess

numWhite = sum (map minCodeCount $ nub guess) - numBlack

minCodeCount v = min (count v ans) (count v guess)

count v ls = length $ filter (==v) ls

filterCodeSet :: CodeSet -> Code -> ResponsePegs -> CodeSet

filterCodeSet set guess response =

filter ((response ==) . guessResult guess) set

scoreGuess :: CodeSet -> Code -> Possibility

scoreGuess possible code = (score, not valid, code)

where

valid = code `elem` possible

allResponses = map (guessResult code) possible

score = getMaxCount allResponses

getMaxCount xs = foldl1' max $ map snd $ getCounts xs

incCount o [] = [(o, 1)]

incCount o (x@(v, c) : xs)

| v == o = (v, c + 1) : xs

| otherwise = x : incCount o xs

getCounts xs = foldr incCount [] xs

splitToChunks :: Int -> [a] -> [[a]]

splitToChunks numChunks ls = chunk (length ls `quot` numChunks) ls

where

chunk _ [] = []

chunk n ls = let (as, bs) = splitAt n ls in

9

as : chunk n bs

bestFromChunk :: CodeSet -> CodeSet -> Possibility

bestFromChunk possibleSet chunk = foldl1' min $ map (scoreGuess possibleSet) chunk

{-

- Main Function

-}

playMastermind :: Code -> Code -> Int -> CodeSet -> CodeSet -> IO Int

playMastermind guess solution k fullSet possibleSet = do

putStrLn $ "Guessing: " ++ show guess

let response@(blk, wht) = guessResult guess solution

putStrLn $

"Response: " ++ show blk ++ " black and "

++ show wht ++ " white"

if blk == length guess then do

putStrLn $ "Solved: " ++ show guess

return k

else do

let possibleSet' = filterCodeSet possibleSet guess response

let possibilities = map (scoreGuess possibleSet') fullSet

let (_, _, nextGuess) = minimum possibilities

playMastermind nextGuess solution (k + 1) fullSet possibleSet'

playMastermindParMap :: Code -> Code -> Int -> CodeSet -> CodeSet -> IO Int

playMastermindParMap guess solution k fullSet possibleSet = do

putStrLn $ "Guessing: " ++ show guess

let response@(blk, wht) = guessResult guess solution

putStrLn $

"Response: " ++ show blk ++ " black and "

++ show wht ++ " white"

if blk == length guess then do

putStrLn $ "Solved: " ++ show guess

return k

else do

let possibleSet' = filterCodeSet possibleSet guess response

let possibilities = runPar $ parMap (scoreGuess possibleSet') fullSet

let (_, _, nextGuess) = minimum possibilities

playMastermindParMap nextGuess solution (k + 1) fullSet possibleSet'

playMastermindChunkStrategy :: Int -> Code -> Code -> Int -> CodeSet -> CodeSet -> IO Int

playMastermindChunkStrategy numChunks guess solution k fullSet possibleSet = do

putStrLn $ "Guessing: " ++ show guess

let response@(blk, wht) = guessResult guess solution

putStrLn $

"Response: " ++ show blk ++ " black and "

++ show wht ++ " white"

if blk == length guess then do

putStrLn $ "Solved: " ++ show guess

return k

else do

let possibleSet' = filterCodeSet possibleSet guess response

let chunks = splitToChunks numChunks fullSet -- TODO: Tune the number of chunks

let possibilities = map (bestFromChunk possibleSet') chunks `using` parList rseq

let (_, _, nextGuess) = foldl1' min possibilities

10

playMastermindChunkStrategy numChunks nextGuess solution (k + 1) fullSet possibleSet'

{-

- Entry Function @ app/Main.hs

-}

readPosInt :: IO Int

readPosInt = do

val <- readLn

if val > 0 then

return val

else

error "Input must be a positive integer"

main :: IO ()

main = do

putStrLn "Game Configuration: How many colors?"

numColors <- readPosInt

putStrLn "Game Configuration: How many holes?"

numHoles <- readPosInt

putStrLn $

"Config: " ++ show (numColors :: Int) ++ " colors and "

++ show (numHoles :: Int)

++ " holes"

putStrLn "What is the solution code?"

solStr <- getLine

let sol = parseCode solStr

if (length sol /= numHoles)

|| any (\x -> x > numColors || x <= 0) sol then

putStrLn "Invalid input code!"

else do

let initialGuess = replicate numHoles 1

let codeset = generateCodeSet [1 .. numColors] numHoles

num_turns_required <- playMastermindChunkStrategy 512 initialGuess sol 1 codeset codeset

putStrLn $ "Solved in " ++ show num_turns_required ++ " turns"

9 Appendix: Dependencies, Compiler Options, and Executable
Options

dependencies:

- master-minds

- monad-par >= 0.3.5

- parallel >= 3.2.2.0

ghc-options:

- -O2

- -threaded

- -rtsopts

- -eventlog

./master-minds -f +RTS -N8 -ls -s <<-EOF

10

4

8 7 6 5

EOF

11

	Problem Overview
	Formal Definition
	Algorithm
	Extension
	Sequential Implementation
	Datatypes
	Generating a Response
	Scoring a Candidate Guess
	Filtering the Possible Set
	Playing the Game
	Performance
	Fixing that Bump

	Parallelization
	Control.Monad.Par(parMap)
	Chunks

	Conclusion
	Appendix: Code
	Appendix: Dependencies, Compiler Options, and Executable Options

