
MRC: Parallel Cache Simulation for
Miss-Ratio Curves

Parallel Functional Programming | Fall 2021 | Final Project
Report

Je�rey Tao
jat2164

Kaylee Treviño
kt2846

Abstract
In this project, we implemented a cache simulator, a variety of storage workloads, and
four cache eviction policies. We parallelize the execution of these cache simulations at
di�erent cache sizes to generate points along miss-ratio curves.

Background

Figure 1: A Miss Ratio Curve [1].

Miss ratio may fluctuate in unexpected ways for a given cache algorithm and workload
across cache sizes. Cache misses invariably translate to higher latency for
data-dependent operations. To this end, Miss-Ratio Curves (MRCs) are a useful tool
for profiling how a given cache eviction policy performs on a given workload, allowing
a system designer to pick an appropriate cache eviction policy and cache size. The
miss ratio is expressed as:

𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑠
𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

A MRC can be produced by running the workload on a simulated cache. As the
simulation runs, it simply tracks whether each cache operation is a hit or a miss, and
computes the miss ratio after it finishes simulating the workload. This produces one
point on the MRC. The full MRC is produced by doing this simulation at every cache
size between a lower and upper bound, usually from 0 (100% miss rate) to the total
size of the data touched by the workload (0% miss rate).

Implementation

CLI

We implement a rudimentary command-line interface to make testing of di�erent
workload configurations easier.

stack exec – mrc-exe <serial | parallel> <workloads> <cache sizes>

The first positional parameter changes whether the graphs are generated serially or in
parallel. The second positional parameter is a comma-separated list of workloads to
run (uniform, skewed, arc). The third positional parameter is a comma-separated list
of cache sizes, interpreted as 2^n (e.g. “3,4,5” will run at cache sizes 8, 16, 32).

Plots are produced by running the python script on the two lines of output produced
by mrc-exe.

python plot_mrc outFile

Workloads

To simplify, we opted to treat accesses as operating on cache lines instead of
variable-sized objects. As such, we model workloads as simple lists of Ints, where
each unique number represents the ID of a particular object being accessed (i.e. the
address). All of our workload-producing functions thus produce [Int].

We first implemented three synthetic workloads:

● Cycling: Parameterized by cycle width. Performs a linear cycle over a range of
values (e.g. 1, 2, … 100, 1, 2, …)

● Uniform Random: Parameterized by key space. Generates random values in the
key space at random probability.

● Skewed Random: Parameterized by Zipfian constant and key space. Generates
random values in the key space according to the Zipfian distribution. Higher
Zipfian constant means

We also use the production traces originally used in the ARC [5] paper. These traces
were collected from real production workloads to evaluate the performance of the ARC
cache eviction algorithm and include traces from desktop workstations, a production
OLTP database server, and a production search engine server. We sourced these trace
files from the Dgraph project, which uses them as benchmarks for its in-memory
cache Ristretto. These traces come compressed with GZip. When uncompressed, they
are in a plain text format with 4 numbers per line, with the first two numbers
corresponding to a base address and a read width (e.g. 1000 8 0 0 -> read 1000, 1001,
1002, 1003, 1004, 1005, 1006, 1007). At runtime, we read the compressed trace file,
uncompress it, and flatten the read sequence into our standard read ID list format.

Due to the size of the ARC traces (millions of accesses), we limit our analysis to
simulations on fixed-length windows from the beginning of each trace (50,000 ops).

Eviction Algorithms

We implemented 4 eviction algorithms: Least Recently Used (LRU), First In First Out
(FIFO), Least Frequently Used (LFU), and Decay Least Frequently Used (DLFU). Many
algorithms require some state for bookkeeping. We can conceptualize the cache
eviction algorithm as a pure function:

f(state, cache contents, next access) → (state, eviction choice)

State is opaque to the simulation runner and is algorithm-specific. As such, it is
simply stored after an invocation of the eviction algorithm and passed back into the
next invocation. An example of state is the priority queue for the Least Recently Used
algorithm.

Cache Simulation

The cache simulator is initialized with the cache size, eviction algorithm, and
workload. It creates a representation of the (initially empty) cache contents and
begins simulating the workload. For each access in the workload, it tracks if the access
is a hit or miss. If it is a miss and the cache is full, it invokes the eviction algorithm and
applies the eviction choice to the cache contents. The simulator continues this process

until the workload trace is completely consumed. At the end, the simulator returns the
miss ratio. Formally:

simulate(algorithm, size, workload) → double

As final output, once all of the simulations across cache sizes for a given workload and
eviction algorithm are complete, the program outputs all of the data points as a
complete MRC. We can then visualize the data points separately as MRC plots.

Plotting

For expedience of implementation, we emit results from the parallel cache simulation
as plain text. We implemented a python script with matplotlib to parse the results and
create graphs.

Parallelization
Simulation of a particular eviction algorithm over a given workload trace is
necessarily serial. However, the generation of MRCs requires repeating simulations at
di�erent cache sizes, which can be parallelized. Each individual simulation takes as
input the intersection of three parameters selected from the sets:

● Eviction Algorithm (A)

● Cache Size (S)

● Workload Trace (W)

Hence, we have total simulations which can be performed in parallel. |𝐴| * |𝑆| * |𝑊|

Results

Miss-Ratio Curves

Below are some of the MRC plots that we have managed to generate using our
simulator.

Figure 2: MRCs for a skewed workload at Zipfian constants 1.1 and 1.3

Figure 3: MRC for a uniform random workload

Figure 4: MRC for ARC OLTP trace

Parallelization Speedup

Workload Serial Time Parallel Time Speedup

Uniform Random, 10,000 ops,
cache size 2^{3-10}

24.6s 9.66s 2.54x

Skewed Random, 10,000 ops,
cache size 2^{3-10}

149s 46.4s 3.2x

ARC, 50,000 ops, cache size
2^{4,6,8,10}

116s 49s 2.3x

Our parallelization strategy improves simulation time by a factor of 2 - 4. Given that
we have 8 cores available, we expected the serial to parallel speedup factor to be closer
to 8. However, examining the event log trace in Threadscope (shown in Figure 5)
reveals that significant time is spent in garbage collection, possibly after a simulation
completes.

Figure 5: Threadscope visualization of uniform & skewed workloads on an 8-core machine.

Future Work
● Implement Belady’s Algorithm to provide a lower bound on cache miss ratio to

MRC plots.
● Change data structures used for cache eviction policies to lower garbage

collection overhead and computation cost per-eviction.
● Implement sampling to better approximate MRCs for trace-based workloads

(e.g. ARC traces) instead of using time-based windowing.

References
[1] Waldspurger, Carl A. et al. “Cache Modeling and Optimization using Miniature
Simulations.” USENIX Annual Technical Conference (2017).

[2] twitter/cache-trace: A collection of Twitter's anonymized production cache traces.

[3] cache2k/cache2k-benchmark: Benchmarks for cache2k and third-party Java
caching products

[4] sunnyszy/lrb: A C++11 simulator for a variety of CDN caching policies.

[5] Megiddo et al. “ARC: A Self-Tuning, Low Overhead Replacement Cache.” USENIX
Conference on File and Storage Technologies (2003).

[6] dgraph-io/benchmarks: Run benchmarks with RDF data.

[7] Minkirri ZWiki DecayingLFUCacheExpiry

https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://github.com/twitter/cache-trace
https://github.com/cache2k/cache2k-benchmark
https://github.com/cache2k/cache2k-benchmark
https://github.com/sunnyszy/lrb
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://github.com/dgraph-io/benchmarks
http://minkirri.apana.org.au/wiki/DecayingLFUCacheExpiry

Code Listings

app/Main.hs
module Main where

import qualified Data.Heap as Heap
import qualified Data.List as List
import Data.List.Split (splitOn)
import Lib (DLFU(..)

, FIFO(..)
, LFU(..)
, LRU(..)
, Wrapper(..)
, arcTraceWorkload
, arcTraceWorkload'
, arcTraces
, simulateGraphs
, simulateGraphsSerially
, uniformWorkload
, zipfWorkload
)

import System.Environment (getArgs
, getProgName
)

import System.Exit (die)
import System.Random.SplitMix (initSMGen)

main :: IO ()
main = do
args <- getArgs
usageOrRun args
where
usageOrRun [serialOrParallel, workloadSpec, cacheSizesSpec] = do

let executionStrategy = resolveExecutionStrategy serialOrParallel
let sizes = interpolateLogSteps $ map read $ splitOn "," cacheSizesSpec

-- Workloads
ds1 <- arcTraceWorkload "ds1.arc.gz"
oltp <- arcTraceWorkload "oltp.arc.gz"
p3 <- arcTraceWorkload "p3.arc.gz"
p8 <- arcTraceWorkload "p8.arc.gz"
s3 <- arcTraceWorkload "s3.arc.gz"

let arc =
[("ARC DS1" , take 50000 ds1)
, ("ARC OLTP", take 50000 oltp)
, ("ARC P3" , take 50000 p3)

, ("ARC P8" , take 50000 p8)
, ("ARC S3" , take 50000 s3)
]

gen <- initSMGen
let skewed =

[("Zipfian " ++ show alpha ++ ", " ++ show keyRange
, zipfWorkload alpha keyRange 10000 gen
)
| alpha <- [1.1, 1.3, 1.5]
, keyRange <- [2 ^ 8, 2 ^ 9, 2 ^ 10]
]

let uniform = [("Uniform 1024", uniformWorkload (2 ^ 10) 10000 gen)]

let workload =
buildWorkload [("skewed", skewed), ("uniform", uniform), ("arc",

arc)]
$ splitOn "," workloadSpec

-- Run simulation
print sizes
print $ executionStrategy
workload
[LRU $ LRUList []
, FIFO $ FIFOList []
, LFU $ LFUHeap Heap.empty
, DLFU $ DLFUHeap Heap.empty
]
sizes

usageOrRun _ = do
pname <- getProgName
die $ "Usage: " ++ pname ++ " serial|parallel 'uniform,skewed,arc'

'6,7,8'"
interpolateLogSteps sizes = concatMap

(\size -> [2 ^ size + (2 ^ (size - 2)) * step | step <- [0 .. 3]])
sizes

buildWorkload
:: [(String, [(String, [Int])])] -> [String] -> [(String, [Int])]

buildWorkload _ [] = []
buildWorkload workloads (w : ws) =

case List.find (\w' -> fst w' == w) workloads of
Just (_, workload) -> workload ++ buildWorkload workloads ws
Nothing -> buildWorkload workloads ws

resolveExecutionStrategy "serial" = simulateGraphsSerially
resolveExecutionStrategy "parallel" = simulateGraphs
resolveExecutionStrategy _ =

error "Valid execution strategies: serial, parallel"

src/Lib.hs
{-# LANGUAGE GADTs #-}

module Lib
(module Simulate
, module Policies
, module Workloads
) where

import Policies
import Simulate
import Workloads

src/Policies.hs
{-# LANGUAGE GADTs #-}

module Policies
(LRU(..)
, FIFO(..)
, LFU(..)
, DLFU(..)
, Wrapper(..)
, Policy
, update
, evict
) where

import qualified Data.Heap as Heap
import qualified Data.List as List

class Policy s where
update :: s -> Int -> s
evict :: s -> Int -> (Int, s)

newtype LRU = LRUList [Int]
newtype FIFO = FIFOList [Int]
newtype LFU = LFUHeap (Heap.MinPrioHeap Int Int)
newtype DLFU = DLFUHeap (Heap.MinPrioHeap Float (Int, Int, Int)) -- Format:
(count (lastTime, totalTime, id))
data Wrapper = LRU LRU | FIFO FIFO | LFU LFU | DLFU DLFU

instance Policy Wrapper where
update (LRU l) wid = LRU $ update l wid
update (FIFO l) wid = FIFO $ update l wid
update (LFU l) wid = LFU $ update l wid
update (DLFU l) wid = DLFU $ update l wid

evict (LRU l) wid = (e, LRU p) where (e, p) = evict l wid
evict (FIFO l) wid = (e, FIFO p) where (e, p) = evict l wid
evict (LFU l) wid = (e, LFU p) where (e, p) = evict l wid
evict (DLFU l) wid = (e, DLFU p) where (e, p) = evict l wid

instance Show Wrapper where
show (LRU _) = "LRU"
show (FIFO _) = "FIFO"
show (LFU _) = "LFU"
show (DLFU _) = "DLFU"

instance Policy LRU where
update (LRUList lruList) wid = LRUList $ wid : List.delete wid lruList
evict (LRUList lruList) wid = (last lruList, LRUList $ wid : init lruList)

instance Policy FIFO where
update (FIFOList fifoList) wid | wid `elem` fifoList = FIFOList fifoList

| otherwise = FIFOList $ wid : fifoList
evict (FIFOList fifoList) wid =

(last fifoList, FIFOList $ wid : init fifoList)

instance Policy LFU where
update (LFUHeap lfuHeap) wid

| length idList == 1 = LFUHeap $ Heap.insert (p + 1, wid) updatedHeap
| otherwise = LFUHeap $ Heap.insert (1, wid) updatedHeap

where
heapList = Heap.toList lfuHeap
(idList, otherList) = List.partition (\(_, val) -> val == wid) heapList
[(p, _)] = idList
updatedHeap = Heap.fromList otherList

evict (LFUHeap lfuHeap) wid =
(evicted, LFUHeap $ Heap.insert (1, wid) $ Heap.drop 1 lfuHeap)
where [(_, evicted)] = Heap.take 1 lfuHeap

instance Policy DLFU where
update (DLFUHeap dlfuHeap) wid

| length idList == 1 = DLFUHeap
$ Heap.insert (count, (totalT, totalT, wid)) updatedHeap
| otherwise = DLFUHeap $ Heap.insert (1.0, (1, 1, wid)) dlfuHeap

where
decay = 1.0 / (0.0002 * log 2)
hList = Heap.toList dlfuHeap
heapList = [(c, (l, t + 1, v)) | (c, (l, t, v)) <- hList]
(idList, otherList) =
List.partition (\(_, (_, _, val)) -> val == wid) heapList
[(p, (lastT, totalT, _))] = idList
count = p * decay / (decay + fromIntegral (totalT - lastT))
updatedHeap = Heap.fromList otherList

evict (DLFUHeap dlfuHeap) wid =
(evicted, DLFUHeap $ Heap.insert (1.0, (1, 1, wid)) $ Heap.drop 1

dlfuHeap)
where [(_, (_, _, evicted))] = Heap.take 1 dlfuHeap

src/Simulate.hs
{-# LANGUAGE GADTs #-}

module Simulate
(simulate
, simulateGraph
, simulateGraphs
, simulateGraphsSerially
) where

import qualified Control.Parallel.Strategies as Strategies
import qualified Data.Set as Set

import Policies (Policy
, Wrapper(..)
, evict
, update
)

simulate :: Policy p => [Int] -> p -> Int -> Double
simulate workload policyStart size =
fromIntegral (tickSimulate workload policyStart (Set.empty, size) 0 :: Int)

/ fromIntegral (length workload)
where
tickSimulate (nextTouch : restOfWorkload) policy cache@(cacheContents,

cacheSize) misses
| Set.member nextTouch cacheContents
= cacheHit
| length cacheContents < cacheSize
= cacheAdd
| otherwise
= cacheMiss

where
cacheHit =
tickSimulate restOfWorkload (update policy nextTouch) cache misses
cacheAdd = tickSimulate restOfWorkload

(update policy nextTouch)
(Set.insert nextTouch cacheContents, cacheSize)
(misses + 1)

cacheMiss = tickSimulate restOfWorkload
policy'
(cacheContents', cacheSize)

(misses + 1)
(evicted, policy') = evict policy nextTouch
cacheContents' = Set.insert nextTouch (Set.delete evicted

cacheContents)
tickSimulate [] _ _ misses = misses

simulateGraph :: [Int] -> Wrapper -> [Int] -> [Double]
simulateGraph workload policy sizes = Strategies.parMap
Strategies.rpar
(\size -> simulate workload policy size)
sizes
--Strategies.withStrategy (Strategies.parList Strategies.rdeepseq)
-- $ map (simulate workload policy) sizes

simulateGraphs
:: [(String, [Int])] -> [Wrapper] -> [Int] -> [(String, String, [Double])]

simulateGraphs workloads policies sizes = Strategies.parMap
Strategies.rpar
(\((workloadName, workloadAccesses), policy) ->

(workloadName, show policy, simulateGraph workloadAccesses policy
sizes)
)
[(workload, policy) | workload <- workloads, policy <- policies]

simulateGraphsSerially
:: [(String, [Int])] -> [Wrapper] -> [Int] -> [(String, String, [Double])]

simulateGraphsSerially workloads policies sizes =
[(workloadName, show policy, simulateGraphSerially workloadAccesses

policy)
| (workloadName, workloadAccesses) <- workloads
, policy <- policies
]
where
simulateGraphSerially workload policy = map (simulate workload policy)

sizes

src/Workloads.hs
module Workloads
(cycleWorkload
, uniformWorkload
, zipfWorkload
, arcTraceWorkload
, arcTraces
, histogram
, arcTraceWorkload'
) where

import Codec.Compression.GZip (decompress)
import qualified Data.ByteString.Lazy as ByteString
import qualified Data.ByteString.Lazy.UTF8 as UTF8
import Data.List (group)
import Data.Sort (sort)
import System.Random.SplitMix (SMGen

, nextWord64
)

import System.Random.SplitMix.Distributions
(sample
, samples
, uniformR
, zipf
)

cycleWorkload :: (Num a, Enum a) => a -> Int -> [a]
cycleWorkload keyRange numOps = take numOps $ cycle [1 .. keyRange]

uniformWorkload :: Integral b => Int -> Int -> SMGen -> [b]
uniformWorkload keyRange numOps gen = map round
$ samples numOps (fst $ nextWord64 gen) (uniformR 1 (fromIntegral

keyRange))

zipfWorkload :: (Eq t, Num t, Integral a) => Double -> a -> t -> SMGen -> [a]
zipfWorkload _ _ 0 _ = []
zipfWorkload alpha keyRange numOps gen = fst nextValue
: zipfWorkload alpha keyRange (numOps - 1) (snd nextValue)
where
nextValue = genNextValue gen
genNextValue gen' = if fst candidate <= keyRange

then candidate
else genNextValue (snd nextSeed)

where
candidate = (sample (fst nextSeed) (zipf alpha), snd nextSeed)
nextSeed = nextWord64 gen'

histogram :: Ord a => [a] -> IO ()
histogram l = mapM_ (putStrLn . encoded) runs
where
runs = (group . sort) l
encoded r = replicate (length r) '*'

arcTraces :: [[Char]]
arcTraces =
["ds1.arc.gz", "oltp.arc.gz", "s3.arc.gz", "p3.arc.gz", "p8.arc.gz"]

arcTraceWorkload :: (Num b, Read b, Enum b) => [Char] -> IO [b]
arcTraceWorkload traceFile = do
traceContent <- fmap (UTF8.toString . decompress)

(ByteString.readFile ("traces/arc/" ++ traceFile))

return (concatMap traceAccesses $ lines traceContent)
where
traceAccesses line = accessSequence $ words line
accessSequence (base : count : _) = map (+ read base) [1 .. (read count)]
accessSequence _ = []

arcTraceWorkload' :: (Num b, Read b, Enum b) => [Char] -> IO [b]
arcTraceWorkload' traceFile = do
contents <- readFile ("traces/arc/" ++ traceFile)
return (concatMap traceAccesses $ lines contents)
where
traceAccesses line = accessSequence $ words line
accessSequence (base : count : _) = map (+ read base) [1 .. (read count)]
accessSequence _ = []

plot_mrc.py
from os import listdir, makedirs

from os.path import isfile, join

import sys

from pprint import pprint

import matplotlib.pyplot as plt

def load_measurements(sizes, data):

curves = {}

for (workload, policy, points) in data:

if not workload in curves:

curves[workload] = {}

curves[workload][policy] = points

print(pprint(curves))

return sizes, curves

measurements: dict[workload]

def plot_measurements(out_dir, sizes, measurements):

for workload in measurements:

plt.rcParams["figure.figsize"] = (12, 8)

plt.rcParams.update({'font.size': 16})

for policy in measurements[workload]:

plt.plot(sizes, measurements[workload][policy], label = policy)

plt.tight_layout() # otherwise the right y-label is slightly clipped

plt.title(workload)

plt.legend(loc="upper right")

plt.show()

plt.savefig(join(out_dir, f"{workload}.png"))

plt.clf()

if __name__ == "__main__":

in_file = sys.argv[1]

sizes = None

data = None

with open(in_file, "r") as f:

sizes = eval(f.readline())

data = eval(f.readline())

out_dir = "mrcs"

makedirs(out_dir, exist_ok=True)

sizes, measurements = load_measurements(sizes, data)

plot_measurements(out_dir, sizes, measurements)

