MPdist Haskell Implementation:
A distance metric for Time Series

Asif Mallik (am5086)
December 2021

1 MPdist

MPdist (Matrix Profile distance) is a distance metric that captures the similarity
between different time series [1]. Among its various features are its ability to
be able to compare time series of varying lengths, being robust to anomalies,
missing data and other issues common to time series data, very efficient to
compute. In brief, it compares the similarity of subsequences of their time series
in order to determine whether they share motifs or not and hence whether they
are similar. The definition of MPdist makes use of a recently developed concept
in time series data mining known as Matrix Profile.

2 Matrix Profile

Defining a matrix profile rigorously would require at least five prerequisite def-
initions. So, for interest of brevity, we define it informally. A matrix profile
with respect to time series A and B of window size m, is a list representing the
minimal euclidean distance of each m-length subsequence of A to any m-length
subsequence of B. As a result, note that the matrix profile seen as an opera-
tion is non-commutative. The ”matrix” in matrix profile refers to the distance
matrix one would have to compute if they were to naively try to compute the
matrix profile. A join similarity matrix is an extension of this concept that
makes it more symmetric by concatenating the matrix profile of A with respect
to B. Yeh et al. outlines the algorithm for computing the matrix profile for any
given pair of time series [2].

MPdist between time series A and B can then be defined as the nth per-
centile of the join similarity matrix profile of time series A and B. n here is a
parameter to MPdist, so more accurately, MPdist is a family of distance metrics
parameterized by window size m and similarity percentile n. Given a matrix
profile, it is simple to compute the MPdist which amounts to doing a linear time
selection on the resulting matrix profile. Thus, the bulk of the project has been
spent writing and optimizing STOMP and STAMP (in particular, STOMP).

Lisabeth

Beth

Maryanne

Mary

0.0 05 10 15 20 25

Figure 1: Time series clustered by MPdist

Figure 1 shows a clustering of different handwriting of names using MPdist.
It can be seen it correctly finds Maryanne, Mary and Anne to be similar and
similarly with Beth, Lisa and Lisabeth as they share parts of the name. However,
it finds the two groups to be dissimilar. The actual distances can be verified by
running the program according to the instructions given in the README file.

3 STOMP and STAMP algorithm

STAMP and STOMP are two algorithms for computing the matrix profile be-
tween two time series. The STAMP algorithm works by iterating through the
indices of one of the time series to select as a starting index for the subsequence.
Then, in each iteration, it computes a sequence of sliding dot products with the
selected subsequence as the starting point so as to compute the minimum dis-
tance over it. At the ith iteration the minimum distance over these sliding
distances becomes the ith entry of the matrix profile. The novelty in this algo-
rithm is the use of Fast Fourier Transform and the sliding dot product trick in
order to avoid recomputing. Overall, its complexity is O(n?logn) with n being
the length of the time series. STOMP is even faster with a runtime of O(n?) by

10

11

using utilizing the diagonal dependence structure of the dot product matrix of
the subsequences. Namely,

QT = Qi1 -1 —TicaTj—1 + Tigm—1Tj4m—1

With this, we are able to apply dynamic programming and simultaneously
split the computation of such a matrix in parallel into its diagonals whose com-
putations are independent of each other. A full treatment of all the modifications
and optimizations made to STOMP to make it as fast as possible can be found
in Zhu et al. [3]

4 The Implementations

4.1 MPdist Algorithm

Despite being the topic of my project, the actual algorithm for computing the
MPdist is very simple given the matrix profile algorithm. I parameterize mpdist
using the type of a matrix profile function that would return the matrix profile.

mpdist :: (IFArray -> IFArray -> Int -> [Float]) -> Int -> Float
— => [Float] -> [Float] -> Float

mpdist mpFunc m p tAList tBList = getKPartition k pABBA where
k = min (ceiling (p * (fromIntegral (nA + nB)))) (nA - m + 1
— + nB - m)
PABBA = pAB ++ pBA
pAB = mpFunc tA tB m
pBA = mpFunc tB tA m
tA = toZeroIndexedArray tAList
tB = toZeroIndexedArray tBList
nA = length tAList
nB = length tBList

The function compute the matrix profile for both A with respect to B and B
with respect to A, then joins the two together and then computes the bottom kth
value in the matrix profile. The k depends on the parameter p which specifies
the proportion of the subsequence of the two that define similarity between time
series.

4.2 STAMP

The following is how I define the STAMP algorithm. The bulk of the computa-
tion takes place in Mueen’s Algorithm for Similarity Search which here is called
mass which computes the sliding distance for each subsequence of time series A.
Another important function is the computeMeanStd which computes the rolling
means and standard deviations of time series A.

stamp :: IFArray -> IFArray -> Int -> [Float]

stamp tA tB m = res where
res = map (minimum . (mass (elems tB) (elems meansB) (elems
< stdsB))) rollingA
rollingA = rollingWindow m (elems tA)
(meansB, stdsB) = computeMeanStd tB m

MASS mostly relies on the sliding dot product function and computeMeanStd,
using those to compute distances:

mass :: [Float] -> [Float] -> [Float] -> [Float] -> [Float]

mass t meanT varT q = map (distanceComp meanQ varQ m') (zip3
— meanT varT qt) “using™ parBuffer 100 rdeepseq where

mean) = meanQ' ! O

varQ = varQ' ! O

(meanQ', varQ') = computeMeanStd (toZeroIndexedArray q) m

qt = slidingDotProduct q t

m' fromIntegral m

m = length q

The sliding product computation adds the most computational complexity
to the entire algorithm as its runtime is O(nlogn) and it internally relies on
FFT in order to avoid redundant computation:

slidingDotProduct :: [Float] -> [Float] -> [Float]

slidingDotProduct q t = elems (ixmap (m-2, n-2) succ qt) where
qt = irfft (arrZipWith (%) q_raf t_af)
g_raf = rfft (listArray (0, 2#n-1) g_ra)
t_af = rfft (listArray (0,2*n-1) t_a)
t_a = t ++ (take n (repeat 0))
g_ra = (reverse q) ++ (take (2 * n - m) (repeat 0))
n = length t
m = length q

The rolling mean and standard deviation is computed using a variant of the
Welford online algorithm for computing variance which is called by compute-
MeanStd internally.

welford :: Int -> Int -> IFArray -> ([Float], [Float])

welford k w a
| ¥k <w = 1let fw = fromIntegral w in
let t = take w (elems a) in
let mean = (sum t)/fw in

10

11

12

13

([mean], [(sum (map (\x -> x*x) t))/fw - (mean *x*

-~ 2D
| otherwise = ((newMean : prevMeans), (newVar : prevVars))
— Wwhere

(prevMean : _) = prevMeans

(prevVar : _) = prevVars

newMean = prevMean + (a'k - a!(k-w))/(fromIntegral w)
newVar = prevVar + (a'k - a!(k-w)) * (a'k - newMean +
— al!(k-w) - prevMean)/(fromIntegral w)

(prevMeans, prevVars) = welford (k-1) w a

4.3 STOMP (initial implementation)

Now we look at the code for the STOMP algorithm that I first implemented
without much attempt at making it efficient. First, we have the STOMPTopt
function (opt stands for optimized, the paper introduces changes to the original
STOMP throughout for better performance [3]).

stompOpt :: Array Int Float -> Array Int Float -> Int -> [Float]
stompOpt tA tB m = map (\x -> sqrt (abs (2 * (fromIntegral m) *
— (1-x)))) pearsons where

pearsons = minDiag tA meansA stdsInvA meansDecA tB meansB

— stdsInvB meansDecB m [(-((length tA) - m + 1) +

— 1)..((length tB) - m)]

(meansA, stdsInvA, meansDecA) = preprocessT tA m

(meansB, stdsInvB, meansDecB) = preprocessT tB m

The function does not do much other than other call minDiag which returns
the final maximum correlation for each of the subsequences which is then used
to compute the minimum distance.

Internally, the minDiag recursively combines each of the diagonal with the
previous result by taking their elementwise maximum Pearson correlation, after
padding each of them appropriately, as can be seen below. As mentioned earlier,
this is the natural place for parallelization so, I added a parallel evaluation
strategy here as seen below:

minDiag :: IFArray -> IFArray -> IFArray -> IFArray -> IFArray ->
< IFArray -> IFArray -> IFArray -> Int -> [Int] -> [Float]
minDiag tA meansA stdsInvA meansDecA tB meansB stdsInvB meansDecB
—~ m (k:diags) =
zipWith max paddedPearsons otherDiagPearsons where
otherDiagPearsons = minDiag tA meansA stdsInvA meansDecA tB
— meansB stdsInvB meansDecB m diags
paddedPearsons = take (length tA - m + 1) ((take (-k) (repeat
— (-1))) ++ pearsons ++ (repeat (-1)))
pearsons = reverse rPearsons

10

11

(cov, rPearsons) = computePearsons tA meansA stdsInvA
— meansDecA tB meansB stdsInvB meansDecB m k [upperI,
— (upperI-1)..lowerI]
upperIl = (min ((length tA) - m) ((length tB) - m - k))
lowerI = (max 0 (-k)) + 1
minDiag tA m [] = take (length tA - m + 1) (repeat
- (=1))

The computePearson function individually computes the specific and also
pursues a recursive method internally.

5 Intermediate Results

STAMP performs very poorly in terms of speed. Even computing the MPdist
of two time series of five thousand data points takes very long compared (over
ten minutes) to the naive implementation of STOMP (under a minute). While
I am sure that this can be significantly improved with parallelization and bet-
ter memory management, empirical results from Zhu et. al. [3] and its time
complexity points to it being inherently slower than STOMP. So, I decide not
to spend any more time optimizing STAMP and instead focus on STOMP. In
the rest of the paper, I will be exclusively be focusing on STOMP for
further parallelization efforts.

Now, we look at some analysis of the result for STOMP. I tried running this
in many configurations, but most notably, I ran MPdist on two time series of
size 10,000. I tried seeing what would happen if I ran it with differing number
of cores as seen in figure 2. Seeing that majority of the time was being spent on
garbage collection, I tried to see what would happen if I changed increaseed the
heap size from the default of 1 megabyte to 100 megabytes. Predictably, this
caused a speedup across core count as seen in figures 3.

100 Garbage Collection time
o B Mutator time
60
40
20

Figure 2: Runtime decomposed into garbage collection and mutator times for
default heap size (one megabyte)

B Garbage Collection time
60 B Mutator time

40

20

1 2 3 4 5 6 7 8

Figure 3: Runtime decomposed into garbage collection and mutator times for
heap size hundred megabytes

In order to find the reason behind such high proportion of time being al-
located to garbage collection, I looked at both threadscope and heap profiles.
While threadscope was helpful in showing the timeline of when garbage collec-
tion was taking place, it was not helpful at all in figuring out which function
or types were responsible. So, for this, I looked to heap profiles and I include
two such graphs in figure 4 that I analyzed. As seen in these graphs, the main
culprit types for the garbage collection are float, list, tuple and integers. This
was contrary to what I had expected - I was expecting to see arrays dominate
here but in hindsight it makes sense given the many intermediate lists that
are generated for computation whereas the arrays are reused. Figure 4b gives
even finer detail on the source of the heap allocation due to its description. In
particular, the source that really stands out, both as readable and as having
the highest allocation is newCov. This gives a precise starting point to try to
optimize during the next step.

£
H

Fe
900 .

a0
700

MUT_ARR_PTRS_FROZEN C
oo

soom s00m
oo 400
300M 300M
200m 200M

oo 1o0m

P e o e s e S R 0 200 30 40 500 60 700 80 90 seconds
N A A A

(a) Breaks down heap allocation by type (b) Breaks down heap allocation by closure
description

Figure 4: Heap allocation profiling

6 Optimizations

From the above heap profiles, I guessed that the garbage collection time is am-
plified due to my extensive use of long lazy evaluations. As a result, when
the time comes to do garbage collection, the garbage collector has to traverse
through a much longer chain whereas if strict evaluation was used, the interme-
diate variable they could have been collected long time ago. So instead I wanted
to switch to strict evaluations when there was possibility of very long chain of
dependencies. I did this in multiple places such as in stompOpt I opt for strict
parallel evaluation of preprocessed auxillary time series:

stompOpt tA tB m = map (\x -> sqrt (abs (2 * (fromIntegral m) *
— (1-%)))) pearsons where
pearsons = minDiag tA meansA stdsInvA meansDecA tB meansB
< stdsInvB meansDecB m [(-((length tA) - m + 1) +
— 1)..((length tB) - m)]
(meansA, stdsInvA, meansDecA) = preprocessT tA m

—

(meansB, stdsInvB, meansDecB) = preprocessT tB m

Another place I use this is in computeFullPearsons, a wrapper function I
introduced for computePearsons to change the structure of minDiag (I elaborate
this at the end of this section).

computeFullPearsons tA meansA stdsInvA meansDecA tB meansB
«— stdsInvB meansDecB m k =
take (length tA - m + 1) ((take (k) (repeat (-1))) ++
< pearsons ++ (repeat (-1))) where
pearsons = reverse rPearsons

(cov, rPearsons) = computePearsons tA meansA stdsInvA
— meansDecA tB meansB stdsInvB meansDecB m k [upperI,
— (upperI-1)..lowerI]

upperI = (min ((length tA) - m) ((length tB) - m - k))
lowerI = (max O (-k)) + 1

Another point of optimization is the large number of sparks that were made
(one for every diagonal, of which there are around 20,000 when comparing two
time series of 10,000). So I decided to consolidate the diagonals into larger
chunks which required me to rewrite minDiag. I combined this idea with that of
strict evaluation so that I ended up computing the minimum distance (maximum
correlation) in two steps, one within each of the chunks evaluated strictly, and
one outside it when consolidating them to get the overall minimum:

minDiag :: IFArray -> IFArray -> IFArray -> IFArray -> IFArray ->
— IFArray -> IFArray -> IFArray -> Int -> [Int] -> [Float]

minDiag tA meansA stdsInvA meansDecA tB meansB stdsInvB meansDecB
— m diags = maxPearsons reducedPearsonMatrix where

‘—>_

—

pearsonMatrix = map (computeFullPearsons tA meansA stdsInvA
< meansDecA tB meansB stdsInvB meansDecB m) diags
maxPearsons = foldl (zipWith max) floorPearsons
floorPearsons = take (length tA - m + 1) (repeat (-1))

These optimizations has led to a significant reduction in the heap allocations
at a given time as seen in figure 5. There is a 6 times reduction in the peak
heap allocation from 1.2 gigabytes to 200 megabytes. Furthermore, newCov
is nowhere to be seen and so are types corresponding to integers, tuples. List
construction and floats are still there, likely because they are unavoidable part
of the computation of the matrix profile as the algorithm is structured. This
reduction in garbage collection is reflected in figure 6 which shows the final
runtimes.

£ .

240M é || ;:"

. <Main.sat_sdAd>

[<Main.sat_sde7>

. <GHC.Base.sat_s6Sj>
o

[otHER

BLACKHOLE

220M

200M

180M

160M

140M

MUT_ARR_PTRS_FROZEN_C
©

120M 4

100M

80M

60M

40M +

20M
il .

T T T T T T T T T T 1
50 100 150 200 250 300 350 400 450 500 550 seconds
A

Figure 5: Heap allocation profiling after optimization

6.1 Other failed attempts

These are attempts I have made to reduce garbage collection further but they
backfired in the form of increased time spent on garbage collection

e I tried moving a lot of repeated computations that were inside compute-
Pearsons but for some reason that only increased runtime

e [tried strict evaluations in many other locations to see if I shave off more
garbage collection time but this led to even slower runtime, likely because
it interferes with the optimization made by GHC when there isn’t a good
rationale to

e Write strict version of foldl - for some reason it led to slower runtime

6.2 Other ideas

Here I list some of my other ideas and speculations to try to reduce the garbage
collection time that I did not get the time to implement

e To try to reduce the garbage collection are to use unboxed types for lists
and floats as that is currently the biggest chunk of the allocated type.

e To compute the list of terms A to D before running computePearsons
instead of computing them each time which leads to duplication

e Find ways to avoid conversion between lists and array by directly applying
the same function in the current space

10

7 Final Results and Discussions

The final result shows that after the optimizations made, the MPdist function
runtimes are fairly close to the ideal ones we would expect from a perfect paral-
lelization strategy of the algorithm. We get around a 50% reduction in runtimes
across core counts. There is still significant garbage collection going on but it
forms a much smaller proportion of the total time than compared to before
the optimizations. The discrepancy between our result and the ideal could be
due to unavoidable serial computation such as from input-output and MPdist
computation itself (all parallelization takes place within STOMP).

Ideal run time
B Garbage Collection time
B Mutator time

40

30
20

10

Figure 6: Final run time of MPdist on two time series of lengths 10,000 with
heap allocation of 100mb

Future direction for this line of work would involve further trying to reduce
the garbage collection size using unattempted ideas mentioned in the previous
section. Another interesting direction would be to implement online versions of
the algorithm such as STOMPI in Haskell and seeing whether garbage collection
works better with those kind of algorithms for matrix profile.

References

[1] Shaghayegh Gharghabi, Shima Imani, Anthony Bagnall, Amirali
Darvishzadeh, and Eamonn Keogh. Matrix profile xii: Mpdist: a novel
time series distance measure to allow data mining in more challenging sce-
narios. In 2018 IEEE International Conference on Data Mining (ICDM),
pages 965-970. IEEE, 2018.

[2] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei
Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn

11

Keogh. Matrix profile i: all pairs similarity joins for time series: a unifying
view that includes motifs, discords and shapelets. In 2016 IEEE 16th inter-
national conference on data mining (ICDM), pages 1317-1322. Teee, 2016.

[3] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-

Chia Michael Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and
Eamonn Keogh. Matrix profile ii: Exploiting a novel algorithm and gpus
to break the one hundred million barrier for time series motifs and joins.
In 2016 IEEFE 16th international conference on data mining (ICDM), pages
739-748. IEEE, 2016.

12

