
COMS 4995 Parallel Functional Programming

Project Report : A.I. Hangman

Anthony Pitts
{UNI: aep2195}

Fall 2021

Contents

1 Project Abstract 2

2 Hangman Version Explanation 2

3 Sequential Implementation and Performance 2
3.1 Program Steps . 2
3.2 AI Letter Selection Heuristics . 3
3.3 Data Types . 4
3.4 Sequential Performance . 4

4 First Attempts at Parallelizing Hangman 5
4.1 Creating an NFData Instance for Word Data Type 5
4.2 Parallel Dictionary Processing . 6
4.3 Parallel Pruning Strategies . 6

1

5 Successful Parallelization Strategies 7
5.1 Parallelizing Game Simulations . 7
5.2 Parallelizing Letter Selection . 8
5.3 How Multiple Cores Impacted Runtime . 9

6 Test Suite 10

7 Conclusion and Key Takeaways 10

8 Program Source Code 11
8.1 Runner.hs . 11
8.2 DictProcesssor.hs . 12
8.3 LetterGuesser.hs . 13
8.4 Types.hs . 14
8.5 Hangman.hs . 15
8.6 Main.hs . 17
8.7 RunTests.hs . 18
8.8 Package.yaml . 19

1 Project Abstract

For my Parallel Functional Programming final project, I have implemented a version of the
game “Hangman” in Haskell. My implementation uses AI heuristics and parallel strategies
to predict the next best letter choice in each round of the game. This involved a significant
amount of dictionary/word processing, AI prediction heuristics, and Monadic operations
that lent themselves very well to parallelism.

2 Hangman Version Explanation

At its core, Hangman is a multi-round game in which the player (or AI, in this case)
continuously guesses letters of an unknown word before they run our of guesses.

Unlike the classic version of Hangman, however, my implementation did not restrict the
number of attempts to select a letter to the 5 or so “body parts” of the hangman. Instead,
the program runs until the correct word has been discovered by the AI. The reason behind
this difference is to demonstrate that the program is actually working towards the goal of
finding the word, and it is not simply making 5 incorrect guesses to reduce the runtime.
This way, the better the algorithm and use of parallelism, the faster the program will solve
the word puzzle.

3 Sequential Implementation and Performance

3.1 Program Steps

The logic and control flow of the sequential algorithm that was implemented before intro-
ducing parallelism as follows:

2

1. From the command-line arguments, gather the dictionary file path, the number of
letters that the words being guessed must have, and the number of Hangman games
to simulate.

2. Read in the dictionary, filtering words with different lengths than the user-specified
length.

3. For each game, select a random word from the dictionary for the AI to guess.

4. Continuously call the selectLetter “function” each round until the AI has guessed
every letter in the word.

5. Repeat steps 3-4 until N games have been simulated, where N was specified by the
user’s command-line argument.

3.2 AI Letter Selection Heuristics

Each round of the game, the program must select a letter that it believes could be a missing
letter in the word being guessed. My algorithm uses the heuristic of the “most common”
possible letter. In other words, it considers all words that have the same length as the word
being guessed, and those with letters in the same positions as the correct letters already
guessed. Of these words, it selects the letter that appears most frequently amongst them
(excluding letters already guessed).

Since this is very computationally heavy to run on the dictionary each round, I imple-
mented the following two pruning heuristics:

1. Correct Letter Pruning: If the program guessed the correct letter, update the
dictionary of words by removing words that do not match the updated letter positions
with the newly discovered letter incorporated.

2. Incorrect Letter Pruning: If the program guessed the incorrect letter, update the
dictionary of words by removing all words that contain the incorrectly guessed letter.

3

3.3 Data Types

Central to the simple syntax and efficient semantics of the program was the encapsulation
of certain pieces of data into the following data types.

1.
The InternalState data structure is used to hold critical information on the state of
the Hangman game including the valid words left (wordDict), the word being guessed
(wordToGuess), the letters already guessed (usedLetters), and the currentWord with
the correctly guessed letters resolved to Just Char.

2.
The HangmanGameF data structure is used to specify the current state of the game as
either the Player’s turn or GameOver. Whereas GameOver results in a TerminalState

that ends the game, the PlayerTurn type carries the game’s InternalState and a
function that takes the AI’s next letter guess to proceed to the next game state. To
control the flow of the game from one guess/round to the next, the HangmanGameF

type implements Functor.

3.4 Sequential Performance

Unless otherwise stated, all Threadscope performance statistics shown in this report were
run on the same dictionary, number of simulated games, length of words being guessed, and
cores. This is on the large dictionary provided in the submission folder, words of length 7,
simulating 50 games, and 2 cores (except for the sequential program statistics below, which
is running on 1 core). Keeping these inputs static allows for a fair and controlled assessment
of performance as parallelism gets introduced.

4

The overall performance of the sequential implementation is summarized by Threadscope
as follows:

Aside from the glaring runtime of 2.5 seconds, the health of the program is relatively bal-
anced. There is a spike in activity at the very start of the program, which is likely due to
the process of reading in the dictionary. Other than that, the intensity of activity remains
relatively high throughout the program’s run, yet does not have any random, extreme spikes.
This will prove to be relevant in the selection of the best parallel strategies later.

Ultimately, the goal of parallelizing this program was to reduce the runtime as much as
possible, since that is the primary problem with the usability of this Hangman predictor.

4 First Attempts at Parallelizing Hangman

4.1 Creating an NFData Instance for Word Data Type

After a significant amount of experimentation with several parallel strategies, I found the
most valuable for this program to be rdeepseq. This is largely because the parallel processes
handle words and lists of words, represented as [Word String]. When the program is
resolving a Word, it is useful to resolve it to Normal Form, including the underlying String

it holds. However, in order to take advantage of rdeepseq on the Word data type, I had to
make an instance of NFData for Word. The code for creating this instance is as follows:

5

4.2 Parallel Dictionary Processing

As previously pointed out, the Threadscope analysis of the sequential implementation
showed a spike in CPU activity at the very start of the program. This was likely the
result of reading the dictionary into a list of Words.

In order to distribute this work onto multiple cores, I used a simple chucking strategy
to group the words being processed and realized the following change in runtime:

In retrospect, the value of this change was very minor and ultimately unnecessary since
the size of a dictionary is quite small. Despite the fact that both cores were converting
sparks during the dictionary reading, it was sometimes to the detriment of the runtime
because the overhead of generating all the sparks outweighed any speed-up realized from
parallelization.

4.3 Parallel Pruning Strategies

The other aspect of the program that I made parallel, and later realized its uselessness, was
using parMap rdeepseq on the words being pruned (for both correct and incorrect pruning).
I tried using many different sizes of chunks to parallelize the process, yet saw no gain on
any size chunk.

Ultimately, I found that the problem was that the work being done for each word was
very little and the first core was able to complete each “chunk” of words quickly, leaving
most sparks to get garbage collected. As the below Threadscope report shows, there was
a high density of garbage collected sparks and an increased runtime from the sequential
implementation:

6

5 Successful Parallelization Strategies

5.1 Parallelizing Game Simulations

The first, successful parallel addition to the program was running multiple Hangman games
at once. In order to achieve this, I took advantage of parMap rdeepseq by using that strat-
egy to call the setupGame function on all the words being guessed (1 word per game).

By sparking the call to each game simulation, I was able to appreciate a significant gain in
runtime as shown below:

7

From this Threadscope analysis, it is also clear that, unlike in the past 2 attempts at
utilizing multiple cores, this run showed a significant amount of sparks being converted by
both the first and second cores (as shown in green in the diagram).

With these changes, the runtime was reduced to 2.03 seconds. This is a 16.4% decrease
in runtime from the sequential implementation.

5.2 Parallelizing Letter Selection

The other, successful parallel addition to the program was around generating the letter
frequencies amongst all possible words to determine the “most common” letter. I did this
by breaking up the list of words to be processed into chunks whose sizes were dynamically
determined as a function of the number of letters guessed. This way, the more letters that
have been guessed, the smaller the size of each individual “chunk.” Again, I utilized parMap

rdeepseq by using that strategy to call the updateWordsLetterCounts function that builds
a map of Char to Int, representing the letter frequencies.

The use of this parallel paradigm had the following impact on Hangman’s Threadscope re-
port, as shown below:

8

From this Threadscope analysis, one can notice a few important aspects:

1. The general activity monitor shows that the CPU is far better balanced than previously
realized. The work on the CPU is relatively constant and shows no moments of
exhaustive computation.

2. The percent of sparks being garbage collected is at its lowest, with only 205ms dedi-
cated to garbage collection.

3. With these changes, the runtime was reduced to 815 milliseconds. This is a 67.4% de-
crease in runtime from the sequential implementation. In other words, the complete
parallel implementation runs 3-4 times as fast as the sequential implementa-
tion.

5.3 How Multiple Cores Impacted Runtime

After completion of all the parallel components of the Hangman program, I began to inves-
tigate the impact that the number of cores had on the overall runtime of the program. The
below graph summarizes my findings:

9

Running on a computer with only 2 cores, yet 4 threads, the above results confirm the
notion that my computer is only able to perform productive, parallel work on those 2 cores.
Hence, within the constraints of my hardware, this program runs much faster on 2 cores
than 1. Yet, telling it to run on more than 2 proved to be pointless. Running on 3 or more
cores resulted in approximately the same runtime, if not slightly worse than 2 cores.

As expected, the average runtime on 1 core is slightly less than a 2x speedup from the
sequential implementation. This was nearly ideal since 1 core on my computer has 2 threads
whose absolute best speedup would have been 2x. In the same vein, the average runtime on
2 cores was a 3-4x speedup from the sequential program. Again, this was nearly ideal since
2 cores on my computer has 4 threads, whose absolute best speedup would have been 4x.

6 Test Suite

Details on how to build, run, and test the program can be found in the README file,
located at the root of the code submission.

This program comes with a full test suite which confirms the success of the program
in both sequential and parallel mode. Also, it performs many unit tests that are generally
there for sanity checking certain components such as the expectation of the relative runtimes
if the Hangman games are simulated on a large dictionary or small one, if the AI is guessing
long vs short words, or if the number of games being simulated is large or small.

7 Conclusion and Key Takeaways

My experience coding this parallel program taught me many important lessons about func-
tional and parallel programming. One such lesson is to find where the bulk of effort is being

10

done in the program and parallelize that first. One problem I ran into was that I tried
parallelizing the smaller tasks first, such as reading in the dictionary, before parallelizing
the bigger tasks, such as generating the letter frequencies.

I would also generalize this notion to another lesson, which is to not attempt to par-
allelize all the work. When I tried to refactor my code to use parallel strategies on minor
components, I found that the overhead of garbage collection became too significant. Often,
I realized that this overhead was not worth it for a small piece of computation that could
just be done sequentially.

Lastly, the use of The Haskell Tool Stack for this program showed me a side of Haskell
that I did not get from completing the homework assignments. Seeing how to take many
different Haskell files and build up a full application showed me how Haskell can scale to
industry-level software.

8 Program Source Code

8.1 Runner.hs

1 {-

2 The Runner module is responsible for simulating numerous games of Hangman

3 and the general control flow of each game.

4 -}

5

6 module Runner where

7

8 import Control.Monad.Free

9 import Hangman

10 import Types

11 import LetterGuesser

12 import DictProcessor

13 import Control.Parallel.Strategies(rdeepseq, parMap)

14 import Control.DeepSeq(force)

15

16 -- Simulate several Hangman games.

17 simulateGames :: String -> Int -> Int -> IO [String]

18 simulateGames dictFile wordsLength numberOfGames = do

19 validWords <- loadWordList wordsLength dictFile

20 wordsToGuess <- getRandomWords validWords numberOfGames

21 return $ force (parMap rdeepseq (setupGame validWords) wordsToGuess)

22

23 -- Initialize Hangman game state

24 setupGame :: [Types.Word] -> Types.Word -> String

25 setupGame wordList wordBeingGuessed = runGame $ playGame state

26 where state = Hangman.createInitialState wordList wordBeingGuessed

27

28 -- Run a sinlge game of Hangman

29 runGame :: HangmanGame a -> String

30 runGame (Free (PlayerTurn is next)) = do

31 let letterGuess = Guess $ selectLetter is

32 runGame $ next letterGuess

11

33 runGame (Free (GameOver (Win is))) = wordToGuess is

34 runGame _ = error "Error: Game lost. This should never happen."

8.2 DictProcesssor.hs

1 {-

2 The DictProcessor module is responsible for processing

3 the dictionary that valid words are derived from.

4 -}

5

6 module DictProcessor where

7

8 import Hangman(isPlayableLetter)

9 import Data.Maybe

10 import Data.Char

11 import Types

12 import System.Random (randomRIO)

13 import Data.List.Split(chunksOf)

14 import Control.Parallel.Strategies(rdeepseq, parMap)

15

16 -- Load the dictionary of words

17 loadWordList :: Int -> FilePath -> IO [Types.Word]

18 loadWordList wordsLength = fmap processWords . readFile

19 where processWords fileStr = concat $ parMap rdeepseq maybeWords (chunksOf 100

(lines fileStr))

20 word w

21 | length w == wordsLength && (and $ map isPlayableLetter w) = Just (Word $
map toLower w)

22 | otherwise = Nothing

23 maybeWords wordList = mapMaybe word wordList

24

25 -- Select random words from the dictionary of words

26 getRandomWords :: [Types.Word] -> Int -> IO [Types.Word]

27 getRandomWords dict n = do indices <- randomDictIndices n (length dict)

28 return $ collectWords dict 0 indices

29 where collectWords [] _ _ = []

30 collectWords (x:xs) index indices

31 | elem index indices = getWord index indices x ++ collectWords xs (succ

index) indices

32 | otherwise = collectWords xs (succ index) indices

33 getWord _ [] _ = []

34 getWord a (x:xs) p

35 | a == x = p : getWord a xs p

36 | otherwise = getWord a xs p

37

38 -- Generates a random set of indicies in the list of valid words to determine

39 -- which words to use in each Hangman game being simulated.

40 randomDictIndices :: Int -> Int -> IO [Int]

41 randomDictIndices n dictLength = do

42 randomIndex <- randomRIO (0, dictLength - 1)

12

43 case n <= 1 of

44 True -> return [randomIndex]

45 _ -> do randomIndices <- randomDictIndices (pred n) dictLength

46 return $ randomIndex : randomIndices

8.3 LetterGuesser.hs

1 {-

2 The LetterGuesser module is responsible for the AI process of selecting

3 the next letter to be guessed each round of Hangman. LetterGuesser uses

4 two pruning strategies depending on whether a guessed letter was in the

5 word being guessed or not.

6 -}

7

8 module LetterGuesser where

9

10 import Control.Monad(liftM2)

11 import Types

12 import Data.Map (Map, fromList, insertWith, lookup, unionWith)

13 import Data.Set (Set, member, difference, fromList, toList)

14 import Data.List.Split(chunksOf)

15 import Control.Parallel.Strategies(parMap, rdeepseq)

16

17

18 -- Update dictionary of words if this correct letter was guessed

19 -- by removing words that don’t match the updated letter positions

20 pruneCorrect :: InternalState -> [Types.Word]

21 pruneCorrect is = concat $ parMap rdeepseq filterChunks (chunksOf 1000 dictWords)

22 where filterChunks wordChunk = filter positionAgreement wordChunk

23 dictWords = wordDict is

24 validLetter maybeLetter dictWordLetter = case maybeLetter of

25 (Just l) -> dictWordLetter == l

26 _ -> True

27 positionAgreement w = and $ zipWith validLetter (currentWord is)

(getWordString w)

28

29 -- Update dictionary of words if this incorrect letter was guessed

30 -- by removing words that have the incorrect letter

31 pruneIncorrect :: InternalState -> Char -> [Types.Word]

32 pruneIncorrect is c = concat $ parMap rdeepseq filterChunks (chunksOf 1000

possibleWords)

33 where filterChunks wordChunk = filter wordsWithLetter wordChunk

34 possibleWords = wordDict is

35 wordsWithLetter w = not $ elem c (getWordString w)

36

37 -- Top-level function that uses AI strategies to determine the

38 -- best letter to guess given the game’s InteralState

39 selectLetter :: InternalState -> Char

40 selectLetter is = mostCommonLetter letterFrequencies unguessedLetters

unguessedLettersList (head unguessedLettersList)

13

41 where possibleWords = wordDict is

42 guessedLetters = usedLetters is

43 unguessedLetters = difference (Data.Set.fromList alphabet) guessedLetters

44 unguessedLettersList = toList $ difference (Data.Set.fromList alphabet)

guessedLetters

45 letterFrequencies = generateLetterFreqs guessedLetters possibleWords

46

47 generateLetterFreqs :: Set Char -> [Types.Word] -> Map Char Int

48 generateLetterFreqs guessedLetters wordList = foldr joinMaps emptyLetterMap

mapsFromChunks

49 where mapsFromChunks :: [Map Char Int]

50 mapsFromChunks = parMap rdeepseq (updateLetterCountsWithWords

guessedLetters emptyLetterMap) (chunksOf 60 wordList)

51 joinMaps m1 m2 = unionWith (+) m1 m2

52

53 -- Selects the most common letter from the given letter frequency map

54 mostCommonLetter :: Map Char Int -> Set Char -> [Char] -> Char -> Char

55 mostCommonLetter _ _ [] mostFreqLetter = mostFreqLetter

56 mostCommonLetter letterFreqs unguessedLetters (currentLetter:xs) mostFreqLetter =

57 case liftM2 (>) (freqCount mostFreqLetter) (freqCount currentLetter) of

58 Just (True) -> mostCommonLetter letterFreqs unguessedLetters xs mostFreqLetter

59 _ -> mostCommonLetter letterFreqs unguessedLetters xs currentLetter

60 where freqCount l = Data.Map.lookup l letterFreqs

61

62 -- Update the letter frequency map with the letters in the given word chunk (list)

63 updateLetterCountsWithWords :: Set Char -> Map Char Int -> [Types.Word] -> Map Char

Int

64 updateLetterCountsWithWords guessedLetters m wordList = foldr (updateLetterCounts

guessedLetters) m wordList

65

66 -- Update the letter frequency map with the letters in the given word

67 updateLetterCounts :: Set Char -> Types.Word -> Map Char Int -> Map Char Int

68 updateLetterCounts guessedLetters (Types.Word w) m = foldr (incLetterCount

guessedLetters) m w

69

70 -- Increment the frequency of the given letter in the letter frequency map

71 incLetterCount :: Set Char -> Char -> Map Char Int -> Map Char Int

72 incLetterCount guessedLetters c m

73 | member c guessedLetters = m

74 | otherwise = insertWith (+) c 1 m

75

76 emptyLetterMap :: Map Char Int

77 emptyLetterMap = Data.Map.fromList $ map (\l -> (l, 0)) alphabet

8.4 Types.hs

1 {-

2 The Types module is responsible for defining the many data types used

3 in the Hangman program.

4 -}

14

5

6 module Types where

7

8 import Data.Set(Set, fromList)

9 import Control.Monad.Free

10 import Control.DeepSeq(NFData, rnf)

11

12 data InternalState = InternalState {

13 wordDict :: [Types.Word], -- dynamic list of words that gets smaller as the

program makes guesses

14 wordToGuess :: String,

15 usedLetters :: Set Char,

16 currentWord :: [Maybe Char]

17 } deriving (Show)

18

19 -- Types that determine the current state of the Hangman game

20 newtype RunningState = RunningState InternalState deriving (Show)

21 data TerminalState = Win InternalState | Loss InternalState deriving (Show)

22 data GameState = Terminal TerminalState | Running RunningState deriving (Show)

23

24 -- Free Monad to abstract the game loop

25 data HangmanGameF a =

26 PlayerTurn InternalState (Guess -> a)

27 | GameOver TerminalState

28 instance Functor HangmanGameF where

29 fmap f (PlayerTurn is g) = PlayerTurn is (f . g)

30 fmap _ (GameOver ts) = GameOver ts

31 type HangmanGame a = Free HangmanGameF a

32

33 newtype Guess = Guess Char

34

35 newtype Word = Word String deriving Show

36 instance NFData Types.Word where

37 rnf (Word s) = Word s ‘seq‘ ()

38

39 -- Gets the underlying strin of the Word type

40 getWordString :: Types.Word -> String

41 getWordString (Word s) = s

42

43 alphabet :: [Char]

44 alphabet = [’a’..’z’]

45

46 alphabetSet :: Set Char

47 alphabetSet = fromList [’a’..’z’]

8.5 Hangman.hs

1 {-

2 The Hangman module is responsible for controling the internal game

3 state. Thus, once a letter is guessed, this module validates

15

4 the guess and updates the game’s interal state with that guess.

5 -}

6

7 module Hangman where

8

9 import Control.Monad.Free

10 import Data.Char

11 import Data.Maybe

12 import Data.Set (empty, insert, member)

13 import Types

14 import LetterGuesser(pruneCorrect, pruneIncorrect)

15

16 -- Get the internal state from RunningState

17 internalState :: RunningState -> InternalState

18 internalState (RunningState is) = is

19

20 isPlayableLetter :: Char -> Bool

21 isPlayableLetter c = member (toLower c) alphabetSet

22

23 -- Initialize the state with the word being guessed and subset of

24 -- the dictionary with words of equal length to the word being guessed

25 createInitialState :: [Types.Word] -> Types.Word -> RunningState

26 createInitialState wordDictionary (Word w) = RunningState InternalState {

27 wordDict = wordDictionary,

28 wordToGuess = w,

29 usedLetters = empty,

30 currentWord = map (_ -> Nothing) w

31 }

32

33 -- Update the RunningState with a letter Guess

34 applyGuess :: RunningState -> Guess -> GameState

35 applyGuess (RunningState is) g

36 | all isJust (currentWord newIs) = Terminal $ Win newIs

37 | otherwise = Running $ RunningState newIs

38 where newIs = updateState is g

39

40 -- Update the InternalState with the new Guess

41 updateState :: InternalState -> Guess -> InternalState

42 updateState is (Guess c)

43 | c ‘member‘ usedLetters is = is

44 | any (eqIgnoreCase c) (wordToGuess is) = is {

45 wordDict = pruneCorrect is,

46 usedLetters = insert c (usedLetters is),

47 currentWord = zipWith (getCharMaybe c) (wordToGuess is) (currentWord is)

48 }

49 | otherwise = is {

50 wordDict = pruneIncorrect is c,

51 usedLetters = insert c (usedLetters is)

52 }

53 where

54 eqIgnoreCase char c’ = char == toLower c’

16

55 -- getCharMaybe returns Maybe of the letter if the guess was the letter, else

Nothing

56 getCharMaybe _ _ (Just x) = Just x

57 getCharMaybe guessedChar char _

58 | guessedChar == toLower char = Just char

59 | otherwise = Nothing

60

61 gameOver :: TerminalState -> HangmanGame ()

62 gameOver ts = liftF $ GameOver ts

63

64 playerTurn :: InternalState -> HangmanGame Guess

65 playerTurn is = liftF $ PlayerTurn is id

66

67 -- Hangman Game loop. Ends once it is in a Terminal state.

68 playGame :: RunningState -> HangmanGame ()

69 playGame rs = do

70 c <- playerTurn (internalState rs)

71 case applyGuess rs c of

72 Running rs’ -> playGame rs’

73 Terminal ts -> gameOver ts

8.6 Main.hs

1 module Main where

2

3 import Runner

4 import System.Environment(getArgs, getProgName)

5 import System.Exit(die)

6 import Text.Read(readMaybe)

7

8 main :: IO ()

9 main = do

10 args <- getArgs

11 case args of

12 [filename, wordsLength, numberOfGames] -> do

13 let getWordsLength = case readMaybe wordsLength of

14 Just l -> l

15 _ -> error "wordsLength must be an integer"

16 getNumberOfGames = case readMaybe numberOfGames of

17 Just l -> l

18 _ -> error "numberOfGames must be an integer"

19 results <- simulateGames filename getWordsLength getNumberOfGames

20 putStrLn $ "Solved " ++ (show $ length results) ++ " hangman games."

21 return ()

22 _ -> do

23 pn <- getProgName

24 die $ "Usage: " ++ pn ++ " <filename> <wordsLength>"

17

8.7 RunTests.hs

1 module Main where

2

3 import Runner

4 import Test.HUnit

5 import System.CPUTime

6

7 main :: IO Counts

8 main = runTestTT $ TestList [

9 TestLabel "testDictSizes" testDictSizes,

10 TestLabel "testWordSizes" testWordSizes,

11 TestLabel "testNumberGames" testNumberGames

12]

13

14 testDictSizes :: Test

15 testDictSizes = TestCase $ do

16 -- large dictionary test

17 largeStartTime <- getCPUTime

18 largeDictResults <- simulateGames "data/large_dict.txt" 8 50

19 largeDictResults ‘seq‘ return ()

20 largeEndTime <- getCPUTime

21 let largeDictTime = (largeEndTime - largeStartTime)

22

23 -- medium dictionary test

24 mediumStartTime <- getCPUTime

25 mediumDictResults <- simulateGames "data/medium_dict.txt" 8 50

26 mediumDictResults ‘seq‘ return ()

27 mediumEndTime <- getCPUTime

28 let mediumDictTime = (mediumEndTime - mediumStartTime)

29

30 -- small dictionary test

31 smallStartTime <- getCPUTime

32 smallDictResults <- simulateGames "data/small_dict.txt" 8 50

33 smallDictResults ‘seq‘ return ()

34 smallEndTime <- getCPUTime

35 let smallDictTime = (smallEndTime - smallStartTime)

36

37 let testResult = smallDictTime < mediumDictTime && (mediumDictTime <

largeDictTime)

38 assertBool "Smaller dictionaries should run faster than larger dictionaries!"

testResult

39

40 testWordSizes :: Test

41 testWordSizes = TestCase $ do

42 -- large word lengths test

43 largeStartTime <- getCPUTime

44 largeWordsResults <- simulateGames "data/medium_dict.txt" 8 50

45 largeWordsResults ‘seq‘ return ()

46 largeEndTime <- getCPUTime

47 let largeWordsTime = (largeEndTime - largeStartTime)

18

48

49 -- medium word lengths test

50 mediumStartTime <- getCPUTime

51 mediumWordsResults <- simulateGames "data/medium_dict.txt" 5 50

52 mediumWordsResults ‘seq‘ return ()

53 mediumEndTime <- getCPUTime

54 let mediumWordsTime = (mediumEndTime - mediumStartTime)

55

56 -- small word lengths test

57 smallStartTime <- getCPUTime

58 smallWordsResults <- simulateGames "data/medium_dict.txt" 3 50

59 smallWordsResults ‘seq‘ return ()

60 smallEndTime <- getCPUTime

61 let smallWordsTime = (smallEndTime - smallStartTime)

62

63 let testResult = smallWordsTime < mediumWordsTime && (mediumWordsTime <

largeWordsTime)

64 assertBool "Smaller words should run faster than larger words!" testResult

65

66 testNumberGames :: Test

67 testNumberGames = TestCase $ do

68 -- many games test

69 manyStartTime <- getCPUTime

70 manyGamesResults <- simulateGames "data/medium_dict.txt" 6 75

71 manyGamesResults ‘seq‘ return ()

72 manyEndTime <- getCPUTime

73 let manyGamesTime = (manyEndTime - manyStartTime)

74

75 -- some games test

76 someStartTime <- getCPUTime

77 someGamesResults <- simulateGames "data/medium_dict.txt" 6 25

78 someGamesResults ‘seq‘ return ()

79 someEndTime <- getCPUTime

80 let someGamesTime = (someEndTime - someStartTime)

81

82 -- few games test

83 fewStartTime <- getCPUTime

84 fewGamesResults <- simulateGames "data/medium_dict.txt" 6 5

85 fewGamesResults ‘seq‘ return ()

86 fewEndTime <- getCPUTime

87 let fewGamesTime = (fewEndTime - fewStartTime)

88

89 let testResult = fewGamesTime < someGamesTime && (someGamesTime < manyGamesTime)

90 assertBool "Fewer game simulations should run faster than many simulated games!"

testResult

8.8 Package.yaml

1 name: hangman

2 version: 0.1.0.0

19

3 license: BSD3

4 author: Anthony Pitts (aep2195)

5

6 dependencies:

7 - base >= 4.7 && < 5

8 - random

9 - parallel

10 - split

11 - free

12 - containers

13 - HUnit

14 - deepseq

15

16 library:

17 source-dirs: src

18 ghc-options:

19 - -Wall

20

21 executables:

22 hangman:

23 main: Main.hs

24 source-dirs: app

25 ghc-options:

26 - -O2

27 - -threaded

28 - -rtsopts

29 - -with-rtsopts=-N2

30 - -eventlog

31 - -Wall

32 dependencies:

33 - hangman

34 - random

35 - parallel

36 - split

37

38 tests:

39 hangman-test:

40 main: RunTests.hs

41 source-dirs: tests

42 ghc-options:

43 - -O2

44 - -threaded

45 - -rtsopts

46 - -with-rtsopts=-N2

47 - -eventlog

48 - -Wall

49 dependencies:

50 - hangman

20

	Project Abstract
	Hangman Version Explanation
	Sequential Implementation and Performance
	Program Steps
	AI Letter Selection Heuristics
	Data Types
	Sequential Performance

	First Attempts at Parallelizing Hangman
	Creating an NFData Instance for Word Data Type
	Parallel Dictionary Processing
	Parallel Pruning Strategies

	Successful Parallelization Strategies
	Parallelizing Game Simulations
	Parallelizing Letter Selection
	How Multiple Cores Impacted Runtime

	Test Suite
	Conclusion and Key Takeaways
	Program Source Code
	Runner.hs
	DictProcesssor.hs
	LetterGuesser.hs
	Types.hs
	Hangman.hs
	Main.hs
	RunTests.hs
	Package.yaml

