
Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

Kaiwen Xue, Andreas Cheng
{kx2154, hc3142}@columbia.edu

December 22, 2021

1 Abstract

While it is known that Go-Moku can be won by exhaustively searching the possible out-
comes[1], such solution has a huge search space, making normal computers takes ages to
perform global searching. Normally, to develop a Go-Moku AI, the search tree must be
limited to a certain level. Therefore, as a computational-intensive problem, it is viable to
parallel the operations in the tree search. In Gomokururu, we implemented a Go-Moku
AI in haskell and applied and tested parallelism in various configurations. We found that
parallelizing tree search can make minimax more efficient by tweaking various parameters of
haskell’s parallelism library.

2 Introduction

Go-Moku (or Five in a Row) is a board game where two players take turn to place black
and white piece on a board until the board is full or a player completes a five-in-a-row. The
game board is formed by N ×N horizontal lines. N is traditionally 15 or 19, where N=19 is
an older standard that people Go-Moku on a Go Board. Players should place piece on the
intersection of these lines. The player assigned to the black piece plays first. The goal of the
players is to form a five-in-a-row, which could be vertical, horizontal, or diagonal.

Minimax algorithm is based on a DFS tree search. Each tree node represents a possible
state of the game. Tree leaves can be evaluated using a heuristic functions. Each layer of
the tree will attempt to maximize and minimize the final outcome alternatively. Minimax is
often used in game decisions where there are 1) opponents, and 2) the heuristic function can
reflect the possibility of winning the game. When the tree search is sequential, alpha-beta
pruning can cut the branches to prevent evaluating unnecessary game states.

1

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

3 Design and Implementation

The codes listed at the end of this report are based on our favored setting, which will be
discussed in Experiment Section. Nevertheless, we have tested different settings to compare
the performance of different kinds of parallelism. The full code and instructions to reproduce
our results can be found at our public GitHub repository: https://github.com/KevinRSX/
gomokururu.

3.1 Data Structures

We need Go pieces to play Go-moku. Our implementation names it as Piece. It represents
the state of a grid on the board, so a Piece can be black, white, or empty.

data Piece = White | Black | Empty deriving (Eq)

With the states of grids, we can create a Go-Moku board. The Board data structure contains
a dimension dim, representing how many rows and columns it has, as well as a 2D vector
that stores dim * dim grids. Note that we use the Data.Vector package to create this 2D
vector. The reason is that Vector can ensure random access time of O(1), making it much
master to query.

data Board = Board { dim :: Int

, getBoard :: Vector (Vector Piece) }

deriving (Show)

All our codes are based on these two structures.

3.2 Playing the Game

Our implementation follows the general rules in Go-moku. Players take turn to place a piece
until the board is full or a player completes a five-in-a-row. The first case (A full board) is a
tie; and that player in the latter case is a winner. One interesting part in our implementation
is our winning checking function. We designed a way that could possibly reduce the
the complexity of the function. Instead of searching five-in-a-row in the whole
board, we simply search it based on the last placed piece.

Our winning checking function takes three arguments: row, col, and board. row and col are
for representing the last placed piece on the board.

With this, we can check the winning status by simply checking the ”star lines” with the last
placed piece as the centroid. By ”star lines,” we mean the horizontal, vertical, and diagonal
lines that pass through the last placed piece. An ASCII representation of the star lines is
shown below in the code snippet.

chkBoardWinning row col board

| Black `elem` res && White `elem` res = error "Tie? IMPOSSIBLE!!!"

| null res = Nothing

| otherwise = Just $ head res

2

https://github.com/KevinRSX/gomokururu
https://github.com/KevinRSX/gomokururu

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

-- length res > 1 is possible : more than 5 pieces in a row

where res = mapMaybe whoIsWinning5 sls

sls = getStarLines row col 5 board

whoIsWinning :: [Piece] -> Int -> Maybe Piece

whoIsWinning line cLen = helper (group line) cLen

where

helper :: [[Piece]] -> Int -> Maybe Piece

helper [] cLen = Nothing

helper (x:xs) cLen

| length x >= cLen && head x /= Empty = Just $ head x

| otherwise = helper xs cLen

whoIsWinning5 :: [Piece] -> Maybe Piece

whoIsWinning5 line = whoIsWinning line 5

{-

Star lines

4 4 4

3 3 3

2 2 2

111

432101234

111

2 2 2

3 3 3

4 4 4

-}

3.3 AI

We implement this part with reference to [2], with improvements of the running efficiency
and coding style.

3.3.1 Minimax and Alpha-Beta Pruning

To perform minimax, we generate a game tree of a given maximum level using the Data.Tree
package. Note that we only include neighbors as tree nodes. Unlike in Go, which requires
occupying space on the board, it is meaningless not to place a piece where there is no
neighbors. This approach significantly reduce the tree size.

Code wise, minimax and Alpha-Beta pruning can be done at the same time, as the latter
is just cutting branchese for the former. The minimizer will call the maximizer at the next
level, while the maximizer will call the minimizer at the next level. If there exists a value
indicating that the rest of the branch can be discarded, the algorithm will return a value.

3

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

In addition, if the heuristic calculated at a node exceeds the cutoff point, meaning that the
game will win or lose if the player choose that step, the rest of the tree search will also be
discarded, as this is necessarily the best move. We only include the maximizer here, and
the minimizer will be similar, except that it will call the maximizer to get new beta value
and choose the minimum max value. The code listed at the end of the report does not
perform alpha-beta pruning, as we discard alpha-beta pruning to reach better results for
parallelism.

maxAlpha :: Piece -> Int -> Int -> Int -> Tree Board -> Int

maxAlpha _ _ alpha _ (Node _ []) = alpha

maxAlpha piece lvl alpha beta (Node b (x:xs))

| lvl == 0 = curScore

| canFinish curScore = curScore

| newAlpha >= beta = beta

| otherwise = maxAlpha piece lvl newAlpha beta (Node b xs)

where

curScore = computeScore b piece

canFinish score = score > cutoffScore

newAlpha = max alpha $ minBeta piece (lvl - 1) alpha beta x

3.3.2 AI Entry Point

The entry point of the AI is getNextPos, which takes a Board and the current color of the
piece and calls minimax to select the position for the next move.

3.3.3 Heuristic

There are many heuristic functions for Go-Moku with varying performance. In this project,
we implemented one that we found online and designed a few on our own. The heuristic we
found online is simply based on the connectivity on a piece – the more consecutive pieces
there are, the higher connectivity and chance the player will win. However, consecutive
pieces blocked by the opponent pieces or the border cannot form a five-in-a-row.

Based on the experience on this faulty heuristic, we then designed our own heuristic. We
award no score if both ends are blocked, a low score if one end is block, and a high score if
both ends are empty. This can be easily achieved using pattern matching:

> [a, b, c, d, e] == [Empty, piece, piece, piece, Empty]

= 100 + lineScore3 piece (b:c:d:e:xs)

> [a, b, c, d, e] == [reversePiece piece, piece, piece, piece, Empty]

|| [a, b, c, d, e] == [Empty, piece, piece, piece, reversePiece piece]

= 50 + lineScore3 piece (b:c:d:e:xs)

> otherwise = lineScore3 piece (b:c:d:e:xs)

4

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

3.4 Parallelism

The tree search nature of the minimax nature makes it possible and suitable to use haskell’s
parallel techniques. In particular, we implement parallelism at two places: minimax tree
search and heuristic calculation

3.4.1 Parallelizing Minimax Tree Search

Haskell’s Data.Tree package represents the children of a tree in a list, i.e., [Tree a]. Mini-
max’s aim is to calculate the maximum value of the score of the first node layer. Therefore,
parMap comes in handy, as we are supposed to use Data.List.map to perform sequential
computation.

minmax = parMap rdeepseq (minBeta piece searchLevel) children

However, this only parallelize the first level of computation. All the subtrees are not paral-
lelized. Indeed, the challenge here is posed by the data dependency of alpha-beta pruning.
Alpha-beta pruning assumes a completely sequential operation, as it will always compare
the value calculated at one point to the maximum or minimum value in the previous compu-
tation in order to decide if one branch can be cut. We therefore decide not to use alpha-beta
pruning in our parallel implementation. Nevertheless, not using alpha-beta pruning does not
mean we do not benefit from pruning. We will calculate the score for the node beforehand
continuing to the next level, and if the score is high enough to ensure a winning condition,
the AI will directly choose this node.

In addition, we note that it is also important to control the degree of parallelism. If that
degree is too high, the overhead due to creating sparks will exceed the reduced time due
to parallelism, making parallelism meaningless. To do this, we only parallelize the first few
levels of minimax searching, but keep the rest sequential.

3.4.2 Parallelizing the Computation of Heuristic

The computation of heuristic is also expensive, as we need to apply different functions
detecting different numbers of consecutive pieces to the board. In addition, lines to be
extracted from the board can be horizontal, vertical, and diagonal. To coordinate this, we
use a map-reduce-like method. First, we ”map” the board by extracting lines of different
directions, and assign workers to calculate the partial heuristic score, and then ”reduce” the
calculated score by each worker to a final score. The Eval monad comes in handy:

5

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

runEval $ do

ls2 <- rpar (force (map (lineScore2 piece) pieces))

ls3 <- rpar (force (map (lineScore3 piece) pieces))

ls4 <- rpar (force (map (lineScore4 piece) pieces))

ls5 <- rpar (force (map (lineScore5 piece) pieces))

rseq ls2

rseq ls3

rseq ls4

rseq ls5

return (sum ls2 + sum ls3 + sum ls4 + sum ls5)

Note that the map functions can also be parallized. We will discuss the performance of
different configurations in the following section.

3.5 Tweakable Parameters

In order to ensure that both our sequential and parallel algorithm balance efficiency and
the smartness of the AI, we parameterize some constants so that we can test for their most
appropriate values. First is the number of layers to be searched by minimax, second is the
number of layers to be evaluated sequentially to prevent overheads, and the third is the
cutoff score for minimax to stop searching for another level.

searchLevel :: Int

searchLevel = 2

sequentialLevel :: Int

sequentialLevel = 0 -- level to be evaluated sequentially, must be

-- less than or equal to searchLevel

cutoffScore :: Int

cutoffScore = 1000

4 Evaluation

Our benchmarks include the following:

1. Running time

2. Spark statistics

3. ThreadScope graphs

4. Subjective observation of whether the AI is smart

We use the following 5-tuple to represent our setup: (mode, coreNum, searchLevel,
sequentialLevel, parMapHeuristic). mode can be either seq, par, seqAB, meaning we run
the sequential version, the complete parallel version, or the sequential version with alpha-
beta pruning. coreNum indicates with how many cores we run the experiment. searchLevel

6

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

and sequentialLevel are tweakable parameters discussed in the previous section. Note
that with seq or parAB, we do not use sequentialLevel. parMapHeuristic is a boolean,
meaning whether nor not we will use parMap to parallel inside each worker when computing
heuristic. We run each setup for 3 times and calculate the average running time. For the
other metrics, we will describe the result from one of the tests.

Experiments are run on a 2018 MacBook Pro, with 2.7 GHz Quad-Core Intel Core i7 pro-
cessor. We expect the results to be much faster on desktop machines.

Note that since different setup will result in different number of steps for two AIs finish the
game. The run time is the program run time divided by the number of steps in a game.

4.1 Number of Cores

To ensure fairness of different testings, we restrict the number of steps to 20. In this ex-
periment, we only consider the difference among different number of cores in a completely
parallel setting.

Table 1 shows the comparison of run time and spark statistics for (par, N1, 3, 1, False),
(par, N2, 3, 1, False), and (par, N4, 3, 1, False):

Core Time per step Total Converted GC’d Fizzled

1 4.04 1238280 0 913176 325104
2 2.19 1238340 1343 904299 332698
4 1.36 1238724 14765 865567 358392

Table 1: Different cores

It can be seen that multi-core leads to a significant amount of performance increase in
our implementation. The quad-core system can gain a 2.97× performance increase, and the
double-core system can gain a 1.61× performance increase. In addition, the spark conversion
rate is also higher in multi-core setting. Doubling the number of cores will increase the
conversion rate in a magnitude.

ThreadScope’s output also shows that by using parMap, the workload is balanced evenly,
and the garbage collection does not take majority of time.

7

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

4.2 Parallelizing Worker Threads of Heuristic Computation

As mentioned in the above section, the ”reduce” part of the heuristic computation can be
further parallelized so that each worker thread will call parMap. Table 4 shows its result
against the previous one in four cores.

Setting Time per step Total Converted GC’d Fizzled

(par, N4, 3, 1, False) 1.36 1238724 14765 865567 358392
(par, N4, 3, 1, True) 1.44 109536668 69214 107421589 204586

Table 2: parMap the heuristic worker threads

As shown in the table, the time per step after parallelize the worker threads even increases
slightly, showing that the overhead surpluses the benefit of parallelism. In addition, the
number of sparks in this case is 100× the original sequential case. Therefore, this design is
undesirable and the worker threads should be sequentially evaluated.

4.3 Depth of Search Level

The knowledge of game is key to winning. Balancing efficiency with knowledge is therefore
important. As have shown above, we have picked searchLevel=3. Based on our experience
playing Go-Moku, we categorize the subjective smartness of the AI in ”Good”, ”Reasonable”,
and ”Bad”, where ”Good” means the AI is able to make most moves that experienced
human players would agree, ”Reasonable” means the AI’s move might not be consistent
with experienced human players’ choice but reflect some degree of smartness, and ”Bad”
means the AI’s move is completely unreasonable. We expect our AI to be at least ”Good”,
since the reason to build an AI is to let it compete with human.

In Table 4, we list our comparison results. If we use 4 levels, a step cannot be performed
within a reasonable amount of time starting from step 10. With 1 or 2 levels, while the

8

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

Setting Time per step Smartness

(par, N4, 4, 1, False) N.A. Good
(par, N4, 3, 1, False) 1.36 Good

(par, N4, 2, 1, False) 0.14 Reasonable
(par, N4, 1, 1, False) 0.01* Bad

* One player wins before finishing 20 steps

Table 3: Depth setting, runtime, and smartness comparison

computation speed is extremely fast, the smartness is just ”Reasonable” or even ”Bad”.
The time per step for 3 levels is within the patience of human. This justifies our choice to
use 3 levels as our best setting.

4.4 Partial Parallelism of Tree Search

As noted above, parallelizing a part of the tree, while sequentially evaluating the rest, might
reduce the performance decay caused by overhead of useless spark creation. In this part, we
use a range of different settings by modifying sequentialLevel to evaluate different choices
of partial parallelism.

Setting Steps Time/Step Total Converted

(par, N4, 4, 2, False) 10 6.08 3160731 11690
(par, N4, 4, 3, False) 10 8.74 2808749 227567
(par, N4, 3, 0, False) 20 1.37 1379813 11414
(par, N4, 3, 1, False) 20 1.36 1238724 14765
(par, N4, 3, 2, False) 20 1.57 1226022 35394

Table 4: Tree Searching Performance with spark creation metrics

Note that when searchLevel == sequentialLevel, all levels will be evaluated sequentially
and the minimax will be completely sequential. Since we only care about mode=par here, we
do not test such case. Instead, we evaluate it in the following section. When searchLevel=3,
we can see that both the efficiency and cost of sparks do not differ much. However, we also
compute the performance of searchLevel=4. We found that evaluating only 1 level in
parallel will hurt the performance. Therefore, we conclude that for searching that are in 3
or 4 levels, it is reasonable to use as fewer sequential searching levels as possible, since the
overhead will not reversely affect the performance.

4.5 Parallel vs Sequential

An important design choice we made in our parallel implementation is that we discard
alpha-beta pruning. Therefore, it is important to test if this choice improvese the perfor-
mance.

9

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

Setting Time/Step Smartness

(par, N4, 3, 1, False) 1.36 Good
(seqAB, N4, 3, 3, False) 1.07 Reasonable
(seqAB, N1, 3, 3, False) 0.89 Reasonable
(seq, N4, 3, 3, False) 5.10 Good

Table 5: Parallel vs Sequential

The running time per step for a sequential AI without alpha-beta pruning is the slowest.
What is interesting is the parallel solution’s comparison with seqAB. The running time is
similar and even slower for parallel solution, while the smartness is better. This is due to
the fact that alpha-beta pruning does not gain all the information of the tree of a certain
level. In addition, we can see that alpha-beta pruning does not gain any benefit from
multicore systems. If we have more than 4 cores, the performance for the parallel solution
will potentially be better than the alpha-beta pruning solution.

5 Conclusion and Future Work

Based on the experiment we have performed, we have discovered the most favorable setting
for Gomokururu: (par, N4, 3, 1, False). This setting balances performance, smartness
of AI, and resource utilization.

However, due to time constraint, one possible improvement is not realized in this project.
We can combine alpha-beta pruning with the parallel implementation by implementing the
sequential part in alpha-beta pruning. This requires using two sets of minimax functions
and the sequential and parallel implementation has to call each other. As all the code are
open-sourced on GitHub, we welcome contributions to this implementation.

6 Team Member Contribution

• Andreas Cheng: Data structures, game board, UI, test suite, winning check, heuristic,
neighbor finding

• Kaiwen Xue: Data structures, game board, heuristic, tree building, minimax, paral-
lelism, experiment

10

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

7 Code Listing

7.1 AI.hs

module AI

(

getNextPos,

buildTree,

expandBoard,

computeScore,

computeScore2,

)

where

import Game

import Data.Tree

import Data.Vector as V

((!),

(//),

concat,

toList

)

import Data.Set as S

(fromList,

toList

)

import Data.List (elemIndex)

import Data.Maybe (fromJust)

import Control.Parallel.Strategies

import Control.DeepSeq

-- Constants

minInt :: Int

minInt = -(2 ^ 29)

maxInt :: Int

maxInt = 2 ^ 29 - 1

-- Tweakable parameters

searchLevel :: Int

searchLevel = 2 -- must be less than treeLevel

sequentialLevel :: Int

11

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

sequentialLevel = 1 -- level to be evaluated sequentially, must be

-- less than or equal to searchLevel

cutoffScore :: Int

cutoffScore = 1000

-- getNextPos: AI entry point

-- Assumes there is at least one piece on the board, otherwise buildTree will

-- return an empty tree

getNextPos :: Board -> Piece -> (Int, Int)

getNextPos board piece = boardDiff nextBoard board

where

(Node b children) = buildTree piece board neighbors (searchLevel + 1)

neighbors = expandBoard board

minmax = parMap rdeepseq (minBeta piece searchLevel) children

index = fromJust $ elemIndex (maximum minmax) minmax

(Node nextBoard _) = children !! index

-- Assumptions:

-- 1. two boards have equal dim

-- 2. only differ in one bit

boardDiff :: Board -> Board -> (Int, Int)

boardDiff oldBoard newBoard = (drow, dcol)

where (drow, dcol) = quotRem diffPos (dim newBoard)

diffPos = getDiff oldBoard1d newBoard1d 0

getDiff [] [] _ = error "Invalid parameters"

getDiff (x:xs) (y:ys) ind | x /= y = ind

| x == y = getDiff xs ys (ind + 1)

getDiff _ _ _ = error "unknown error"

oldBoard1d = (V.toList . V.concat . V.toList) (getBoard oldBoard)

newBoard1d = (V.toList . V.concat . V.toList) (getBoard newBoard)

get8NeighboursPoss dBoard r c = validNbPositions

where validNbPositions = [

(r + pr, c + pc) |

pr <- [-1 .. 1],

pc <- [-1 .. 1],

(pr, pc) /= (0, 0),

inBoundary dBoard (r+pr) (c+pc)

]

computeScore :: Board -> Piece -> Int

computeScore db p = csHelper 0 0 db p

where

12

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

csHelper :: Int -> Int -> Board -> Piece -> Int

csHelper r c db p

| c >= bdim = csHelper (r+1) 0 db p

| r >= bdim || c >= bdim = 0

| b ! r ! c /= p = next -- ignore other piece / empty

| otherwise = numOfGoodNb + next

where bdim = dim db

b = getBoard db

next = csHelper r (c + 1) db p

numOfGoodNb = gnHelper b p nbs

where nbs = get8NeighboursPoss db r c

gnHelper b p [] = 0

gnHelper b p (n:ns) =

fromEnum (b ! nr ! nc == p) + gnHelper b p ns

where (nr,nc) = n

computeScore2 :: Board -> Piece -> Int

computeScore2 board piece = runEval $ do

ls2 <- rpar (force (map (lineScore2 piece) pieces))

ls3 <- rpar (force (map (lineScore3 piece) pieces))

ls4 <- rpar (force (map (lineScore4 piece) pieces))

ls5 <- rpar (force (map (lineScore5 piece) pieces))

return (sum ls2 + sum ls3 + sum ls4 + sum ls5)

where

pieces = getBoardLines board

lineScore2 :: Piece -> [Piece] -> Int

lineScore2 _ [] = 0

lineScore2 piece l

| length l >= 4 = lineScore2Helper piece l

| otherwise = 0

where

lineScore2Helper piece (a:b:c:d:xs)

| pieces4 == [Empty, piece, piece, Empty] = 10 + next

| pieces4 == [reversePiece piece, piece, piece, Empty]

|| pieces4 == [Empty, piece, piece, reversePiece piece]

= 5 + next

| otherwise = next

where pieces4 = [a, b, c, d]

next = lineScore2 piece (b:c:d:xs)

lineScore2Helper _ _ = error "unknown error"

lineScore3 :: Piece -> [Piece] -> Int

lineScore3 _ [] = 0

lineScore3 piece l

13

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

| length l >= 5 = lineScore3Helper piece l

| otherwise = 0

where

lineScore3Helper piece (a:b:c:d:e:xs)

| pieces5 == [Empty, piece, piece, piece, Empty] = 100 + next

| pieces5 == [reversePiece piece, piece, piece, piece, Empty]

|| pieces5 == [Empty, piece, piece, piece, reversePiece piece]

= 50 + next

| otherwise = next

where pieces5 = [a, b, c, d, e]

next = lineScore3 piece (b:c:d:e:xs)

lineScore3Helper _ _ = error "unknown error"

lineScore4 :: Piece -> [Piece] -> Int

lineScore4 _ [] = 0

lineScore4 piece l

| length l >= 6 = lineScore4Helper piece l

| otherwise = 0

where

lineScore4Helper piece (a:b:c:d:e:f:xs)

| piece6 ==

[Empty, piece, piece, piece, piece, Empty] = 1000 + next

| piece6 == [reversePiece piece, piece, piece, piece, piece, Empty]

|| piece6 == [Empty, piece, piece, piece, piece, reversePiece piece]

= 500 + next

| otherwise = next

where piece6 = [a,b,c,d,e,f]

next = lineScore4 piece (b:c:d:e:f:xs)

lineScore4Helper _ _ = error "unknown error"

lineScore5 :: Piece -> [Piece] -> Int

lineScore5 _ [] = 0

lineScore5 piece l

| length l >= 5 = lineScore5Helper piece l

| otherwise = 0

where

lineScore5Helper piece (a:b:c:d:e:xs)

| [a, b, c, d, e] ==

[piece, piece, piece, piece, piece] = 10000 + lineScore5 piece (b:c:d:e:xs)

| otherwise = lineScore5 piece (b:c:d:e:xs)

lineScore5Helper _ _ = error "unknown error"

-- Ref: 2019 project

buildTree :: Piece -> Board -> [(Int, Int)] -> Int -> Tree Board

buildTree piece board neighbors lvl = Node board $ children lvl neighbors

14

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

where children _ [] = []

children 0 _ = []

children lvl ((row, col) : xs) =

buildTree (reversePiece piece) newBoard newNeighbors (lvl - 1)

: children lvl xs

where newNeighbors = expandBoard newBoard

newBoard = placePiece board piece row col

maxAlpha :: Piece -> Int -> Tree Board -> Int

maxAlpha piece lvl (Node b children)

| lvl == 0 = curScore

| curScore <= 0 = curScore

| lvl <= sequentialLevel = maximum $ map (minBeta piece (lvl - 1)) children

| otherwise = maximum $ parMap rdeepseq (minBeta piece (lvl - 1)) children

where

curScore = computeScore2 b piece - computeScore2 b (reversePiece piece)

minBeta :: Piece -> Int -> Tree Board -> Int

minBeta piece lvl (Node b children)

| lvl == 0 = curScore

| curScore >= cutoffScore = curScore

| lvl <= sequentialLevel = minimum $ map (maxAlpha piece (lvl - 1)) children

| otherwise = minimum $ parMap rdeepseq (maxAlpha piece (lvl - 1)) children

where

curScore = computeScore2 b piece - computeScore2 b (reversePiece piece)

-- Get a list (or vector) of points created by the next move

expandBoard :: Board -> [(Int, Int)]

expandBoard db = S.toList $ S.fromList $ ebHelper 0 0 db

where

ebHelper r c db

| c >= bdim = ebHelper (r + 1) 0 db

| r >= bdim || c >= bdim = []

| b ! r ! c == Empty = next

| otherwise = validNbPositions ++ next

where

b = getBoard db

bdim = dim db

next = ebHelper r (c + 1) db

validNbPositions = [

(r + pr, c + pc) |

pr <- [-1 .. 1],

pc <- [-1 .. 1],

(pr, pc) /= (0, 0),

emptyValid db (r+pr) (c+pc)

15

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

]

7.2 Game.hs

module Game

(

Piece (..),

Board (..),

genBoard,

putBoard,

placePiece,

placePieceFrmTuples,

placePieceFrmTuplesF,

whoIsWinning5,

piece2emoji,

showStepInfo,

emptyValid,

inBoundary,

reversePiece,

chkBoardWinning,

getBoardLines

)

where

import Data.Vector as V

(

Vector,

map,

replicate,

toList,

fromList,

slice,

(//),

(!)

)

import Data.List (group)

import Data.Char

import Data.Maybe (mapMaybe)

-- Algebraic data types for Board and Piece

-- TODO (Andreas): Use another branch to try 1D once the first task is done

data Board = Board { dim :: Int

, getBoard :: Vector (Vector Piece) }

deriving (Show)

16

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

-- type Board = Vector (Vector Piece)

data Piece = White | Black | Empty deriving (Eq)

instance Show Piece where

show White = "W"

show Black = "B"

show _ = "_"

reversePiece :: Piece -> Piece

reversePiece White = Black

reversePiece Black = White

reversePiece _ = error "invalid argument"

-- full-width alphabets and space are used to align with the emojis

-- if the board's dim goes beyond a specific number, then this becomes ugly

putBoard :: Board -> IO ()

putBoard b = do

putStrLn $ '' : take (length listifyStrBoard) [''..]

mapM_ (putStrLn . uncurry (:)) (zip [''..] listifyStrBoard)

where listifyStrBoard = V.toList $ V.map getVPieceString $ getBoard b

piece2emoji :: Piece -> [Char]

piece2emoji White = ""

piece2emoji Black = ""

piece2emoji Empty = ""

getVPieceString :: Vector Piece -> [Char]

getVPieceString vp = concatMap piece2emoji (V.toList vp)

genBoard :: Int -> Board

genBoard dim = Board dim bd

where bd = V.replicate dim (V.replicate dim Empty)

showStepInfo :: Piece -> Int -> IO ()

showStepInfo p step = do

putStrLn $ "\nStep " ++ show step ++ ": " ++ piece2emoji p ++ "'s move"

-- Modifying Board state

emptyValid :: Board -> Int -> Int -> Bool

emptyValid board row col =

inBoundary board row col && (getBoard board ! row ! col) == Empty

where db = dim board

inBoundary :: Board -> Int -> Int -> Bool

17

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

inBoundary board row col =

row >= 0 && col >= 0 && row < db && col < db

where db = dim board

placePiece :: Board -> Piece -> Int -> Int -> Board

placePiece board p row col = Board (dim board) bd

where bd = b // [(row, updatedRow)]

updatedRow = (b ! row) // [(col, p)]

b = getBoard board

placePieceFrmTuples :: Board -> [(Piece, Int, Int)] -> Board

placePieceFrmTuples board [] = board

placePieceFrmTuples board (m:ms) =

placePieceFrmTuples newBoard ms

where newBoard = placePiece board p r c

(p,r,c) = m

-- F stands for FANCY

placePieceFrmTuplesF :: Board -> [String] -> Board

placePieceFrmTuplesF board cList = placePieceFrmTuples board pList

where pList = helper cList

helper [] = []

helper (x:xs) =

(p,r,c) : helper xs

where

(cp:cr:cc:eol) = x

p = if cp =='B' then Black else White

r = ord cr - ord 'A'

c = ord cc - ord 'A'

getBoardLines :: Board -> [[Piece]]

getBoardLines dBoard =

hLines ++ vLines ++ lhLinesLeft ++ lhLinesRight ++ hlLinesLeft ++ hlLinesRight

where

bDim = dim dBoard

b = dBoard

max_rc = bDim - 1

hLines = [getLineFrmBoard b r 0 r max_rc | r <- [0..max_rc]]

vLines = [getLineFrmBoard b 0 c max_rc c | c <- [0..max_rc]]

-- [0..bDim] below can be adjusted to ignore diagonal lines in which length <5

-- Something like: [5..bDim-5]

lhLinesLeft = [getLineFrmBoard b rc 0 0 rc | rc <- [0..max_rc]] -- ///////////

lhLinesRight = [getLineFrmBoard b max_rc rc rc max_rc | rc <- [1..max_rc]] -- ///////////

hlLinesLeft = [getLineFrmBoard b (max_rc - rc) 0 max_rc rc | rc <- [0..max_rc]] -- \\\\\\\\\\\

hlLinesRight = [getLineFrmBoard b 0 rc (max_rc - rc) max_rc | rc <- [1..max_rc]] -- \\\\\\\\\\\

18

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

-- Check win

whoIsWinning :: [Piece] -> Int -> Maybe Piece

whoIsWinning line cLen = helper (group line) cLen

where

helper :: [[Piece]] -> Int -> Maybe Piece

helper [] cLen = Nothing

helper (x:xs) cLen

| length x >= cLen && head x /= Empty = Just $ head x

| otherwise = helper xs cLen

whoIsWinning5 :: [Piece] -> Maybe Piece

whoIsWinning5 line = whoIsWinning line 5

chkBoardWinning row col board

| Black `elem` res && White `elem` res = error "Tie? IMPOSSIBLE!!!"

| null res = Nothing

| otherwise = Just $ head res -- length res > 1 is possible : more than 5 pieces in a row

where res = mapMaybe whoIsWinning5 sls

sls = getStarLines row col 5 board

getColFrmBoard :: Board -> Int -> Int -> Int -> [Piece]

getColFrmBoard board col rf rt

| col < 0 = error "bad col"

| col >= bDim = error "bad col: larger than dimension"

| otherwise = helper b [rf..rt]

where b = getBoard board

bDim = dim board

helper b [] = []

helper b (r:rs) = (b ! r ! col) : helper b rs

getLineFrmBoard :: Board -> Int -> Int -> Int -> Int -> [Piece]

getLineFrmBoard board fr fc tr tc

| fr<0 || fc<0 || tr<0 || tc <0 = error "some coordinates are zeroes"

| fr>=bDim || fc>=bDim || tr>=bDim || tc>=bDim = error "some coordinates are beyond dimension"

| fr == tr && fc == tc = [b ! fr ! fc] -- A dot

| fr == tr = hLine b fr fc tc

| fc == tc = vLine board fc fr tr

| abs (fr-tr) == abs (fc-tc) = dLine b fr fc tr tc

| otherwise =

error $ show fr ++ " " ++ show fc ++ " " ++ show tr ++" " ++ show tc ++ " genDlineFrmBoard error: coordinates are wrong"

where b = getBoard board

bDim = dim board

19

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

hLine b row colA colB =

V.toList (V.slice colA (colB-colA+1) (b ! row))

vLine = getColFrmBoard

dLine b fr fc tr tc =

dHelper b ftr ftc

where

ftr = if fr < tr then [fr..tr] else [fr,fr-1..tr]

ftc = if fc < tc then [fc..tc] else [fc,fc-1..tc]

dHelper b [] [] = []

dHelper b _ [] = []

dHelper b [] _ = []

dHelper b (r:rs) (c:cs) = b ! r ! c : dHelper b rs cs

{-

Star lines

4 4 4

3 3 3

2 2 2

111

432101234

111

2 2 2

3 3 3

4 4 4

-}

-- Something is wrong with this function

getDrc fr fc dr dc dim len

| len<=0 || nr < 0 || nc < 0 || nr >= dim || nc >= dim = (fr,fc)

| otherwise = getDrc nr nc dr dc dim ll

where nr = fr+dr

nc = fc+dc

ll = len-1

-- TODO: create type of Vector (Vector a)

getStarLines :: Int -> Int -> Int -> Board -> [[Piece]]

getStarLines row col llen board =

[

-- horizontal

V.toList (V.slice hi hn (b ! row)),

-- verticals

getColFrmBoard board col ra rb,

20

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

-- diagonals

getLineFrmBoard board tlr tlc brr brc,

getLineFrmBoard board blr blc trr trc

]

where b = getBoard board

bDim = dim board

hi = if col - llen < 0 then 0 else col - llen + 1

hn = if hi + hLen > bDim then bDim - hi else hLen

hLen = llen*2-1

ra = if row - llen < 0 then 0 else row - llen + 1

rb = if row + llen >= bDim then bDim - 1 else row + llen - 1

(tlr, tlc) = getDrc row col (-1) (-1) bDim llen

(brr, brc) = getDrc row col 1 1 bDim llen

(blr, blc) = getDrc row col 1 (-1) bDim llen

(trr, trc) = getDrc row col (-1) 1 bDim llen

7.3 Spec.hs

module Main where

import Text.Printf

import Data.Tree

import Game

import AI

redANSI = "\ESC[31m"

greenANSI = "\ESC[32m"

defANSI = "\ESC[0m"

redify s = redANSI ++ s ++ defANSI

greenify s = greenANSI ++ s ++ defANSI

putCheckRes :: (PrintfArg p, Eq a) => p -> a -> a -> IO Bool

putCheckRes caseName eRes res = do

putStrLn $ prettyCaseName ++ " " ++ passStr

return match

where match = res == eRes

passStr = if res == eRes then greenify "passed" else redify "failed"

prettyCaseName = printf "%-40s" caseName

showTree :: Tree Board -> IO ()

showTree (Node board children) = do

putBoard board

21

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

putStr "\n"

showTreeHelper children

showTreeHelper :: [Tree Board] -> IO ()

showTreeHelper [] = do return ()

showTreeHelper (c:cs) = do

showTree c

showTreeHelper cs

boardPlacementTest :: IO ()

boardPlacementTest = do

putBoard $ genBoard 10

putStr "\n"

let board1 = placePiece (genBoard 10) White 4 5

putBoard board1

putStr "\n"

let board2 = placePiece board1 Black 3 4

putBoard board2

testWhoIsWinning :: IO Bool

testWhoIsWinning = do

c1 <- putCheckRes

"No one is winning (5 Empty): "

Nothing

(whoIsWinning5 $ replicate 4 Black ++ replicate 4 White ++ replicate 5 Empty)

c2 <- putCheckRes

"Black is winning (5 Black): "

(Just Black)

(whoIsWinning5 $ replicate 4 White ++ [Empty, White] ++ replicate 5 Black)

c3 <- putCheckRes

"White is winning (5 White): "

(Just White)

(whoIsWinning5 $ replicate 4 Black ++ replicate 5 White)

return $ c1 && c2 && c3

testChkBoardWinning :: IO Bool

testChkBoardWinning = do

let t = placePieceFrmTuplesF (genBoard 17) ["BKJ","WKJ","BLM","BBC",

"WOM", "WON","WOO","WOP","WOQ"]

22

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

c1 <- putCheckRes

"White won on row O in a board: "

(Just White)

(chkBoardWinning 14 14 t)

let t = placePieceFrmTuplesF (genBoard 17) ["BAA", "BBB", "BCC", "BDD", "BEE",

"WAQ", "WBP", "WCO", "WDN", "WEM",

"WQA", "WPB", "WOC", "WND", "WME",

"BQQ", "BPP", "BOO", "BNN", "BMM"]

-- let t = placePieceFrmTuplesF (genBoard 17) ["BAA"]

c2 <- putCheckRes

"Black wins (AA-EE): "

(Just Black)

(chkBoardWinning 0 0 t)

c3 <- putCheckRes

"White wins (AQ-EM): "

(Just White)

(chkBoardWinning 1 15 t)

c4 <- putCheckRes

"White wins (QA-ME): "

(Just White)

(chkBoardWinning 16 0 t)

return $ c1 && c2 && c3 && c4

buildTreeTest :: IO ()

buildTreeTest = do

putStrLn "Running buildTreeTest"

let t = placePieceFrmTuplesF (genBoard 15) ["BGG"]

showTree $ buildTree White t (expandBoard t) 2

main :: IO ()

main = do

-- boardPlacementTest

-- buildTreeTest

putStrLn "> Running testcases..."

let res = sequence [

testWhoIsWinning,

testChkBoardWinning

23

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

]

allPassed <- and <$> res

if allPassed then

putStrLn "> Done"

else

error $ redify "Some test cases failed"

7.4 Main.hs

module Main where

import Game

import AI

import Data.Char

main :: IO ()

main = do

let t = placePieceFrmTuplesF (genBoard 15) ["BHH"]

gameLoop t White 0 20

getPair :: IO (Int, Int)

getPair = do

line <- getLine

let (rl:cl:_) = line

let rlRet = ord (toUpper rl) - ord 'A'

clRet = ord (toUpper cl) - ord 'A'

return (rlRet, clRet)

takeTurn :: Board -> Piece -> Int -> IO (Board, Int, Int)

takeTurn board piece step = do

putStrLn $ "It's " ++ piece2emoji piece ++ " turn."

putStrLn $ "Please place your piece (e.g. KF):"

-- putStrLn £ "Input " ++ piece2emoji piece ++ " row and col (e.g. FK):"

(row, col) <- getPair

if not (emptyValid board row col)

then do

putStrLn "Invalid placement, try again."

takeTurn board piece step

else do

let newBoard = placePiece board piece row col

showStepInfo piece step

putBoard newBoard

return (newBoard, row, col)

24

Fall 2021
COMS W4995: Parallel Functional Programming

Project Report
Gomokururu: A Go-Moku Solver

takeTurnAI :: Board -> Piece -> Int -> IO (Board, Int, Int)

takeTurnAI board piece step = do

putStrLn $ "It's " ++ piece2emoji piece ++ " (AI)'s turn."

let (row, col) = getNextPos board piece

newBoard = placePiece board piece row col

showStepInfo piece step

putBoard newBoard

return (newBoard, row, col)

gameLoop :: Board -> Piece -> Int -> Int -> IO ()

gameLoop board piece step totalSteps = do

putStrLn "\n====Current Board===="

putBoard board

putStrLn "====================="

(newBoard, row, col) <- case piece of

Black -> takeTurnAI board piece (step + 1)

White -> takeTurnAI board piece (step + 1)

putStrLn $ "Score for step " ++ (show $ step + 1) ++ ": " ++

(show $ computeScore2 newBoard piece)

if step + 1 >= totalSteps then do putStrLn $ "Game ended at step limit."

else do

case chkBoardWinning row col newBoard of

Nothing -> gameLoop newBoard (reversePiece piece) (step + 1) totalSteps

(Just piece) -> do putStrLn $ piece2emoji piece ++ " wins!\nGame ended."

References

[1] Go-Moku Solved by New Search Techniques. url: https://www.aaai.org/Papers/
Symposia/Fall/1993/FS-93-02/FS93-02-001.pdf.

[2] Gomoku Game in Haskell. url: http://www.cs.columbia.edu/~sedwards/classes/
2019/4995-fall/reports/gomoku.pdf.

25

https://www.aaai.org/Papers/Symposia/Fall/1993/FS-93-02/FS93-02-001.pdf
https://www.aaai.org/Papers/Symposia/Fall/1993/FS-93-02/FS93-02-001.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/gomoku.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/gomoku.pdf

	Abstract
	Introduction
	Design and Implementation
	Data Structures
	Playing the Game
	AI
	Minimax and Alpha-Beta Pruning
	AI Entry Point
	Heuristic

	Parallelism
	Parallelizing Minimax Tree Search
	Parallelizing the Computation of Heuristic

	Tweakable Parameters

	Evaluation
	Number of Cores
	Parallelizing Worker Threads of Heuristic Computation
	Depth of Search Level
	Partial Parallelism of Tree Search
	Parallel vs Sequential

	Conclusion and Future Work
	Team Member Contribution
	Code Listing
	AI.hs
	Game.hs
	Spec.hs
	Main.hs

