
COMS4995 Final Project: AI Gomoku Player in Haskell

Yunkai Zhu; UNI: yz4129

1 Introduction

Gomoku, also called Five in a Row, is an abstract strategy board game. It is usually played by two
players, represented by the white and black Go stones, on a Go board. Players can place stones of
their color on empty intersections on the board, represented by (row, column). When a player have
placed an unbroken chain of 5 stones, the game stops and that player wins.

2 Project Set-up

In this project, the game board is represented by a 9×9 matrix of integers, where 0 represents empty
space, 1 and -1 represent different players. Two AI players are built: the first one is implemented using
the MinMax algorithm with alpha-beta pruning; the second one also utilizes the MinMax algorithm,
but is implemented in a parallel method.

3 AI Player

3.1 interface

The AI player takes in a board ([[int]]) and a side (int) and returns the best move ((int,int)).

3.2 Basic Idea

The AI player implements the MinMax search algorithm. The idea is to assume both players uses
the same strategy to play the game, which is to make the move that gives the best outcome. We use
recursion to create a tree structure. Alternating levels of the tree represents alternating turns between
both players. We populate the tree bottom-up. At each level, the player chooses the move with the
best outcome.
The outcome is decided using heuristics, which is implemented in the scoreBoard function. Since the
heuristics is not the focus of this project, I have randomly chosen one that makes some sense.

3.3 Alpha-beta pruning

What usually comes together with the MinMax search is Alpha-beta pruning. The idea is that when
certain conditions are satisfied, we can ignore certain subtrees. However, I think to implement this
algorithm, our MinMax search has to be in serial (i.e. search each children of a node in sequence).
Therefore, I did not implement this algorithm in this project.

4 Performances

This section shows the performances of both AI player on the same scenario: make a move based on
the current board. The AI player with alpha-beta pruning is able to make a prediciton within 0.766

1

seconds for depth 3 and 6.932 seconds for depth 4. The runtime of the parallel AI is shown in Table 1.
The results show that the parallel implementation is able to speed up the process significantly: when

Table 1: Performances of two AI players (averaged on 10 runs)
1 core 4 cores 8 cores

Parallel AI depth 3 2.039 0.807 0.646
Parallel AI depth 4 82.46 30.808 24.684

running in 4 cores, the run time is less than half of the run time in 1 core. However, the run time of
the alpha-beta pruning AI is significantly better than this parallel implement.

References

https://www.andrew.cmu.edu/user/rbcarlso/proposalrbcarlso.html

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.5904rep=rep1type=pdf

2

12/22/21, 6:17 PMMain.hs

Page 1 of 4http://localhost:4649/?mode=haskell

module Main where

import Control.Parallel.Strategies

main :: IO()
main = print(r)

{-
 Make a move on the board
 Input: board, tar_cor, side
 Return: board
-}
makeAMove :: [[Int]] -> (Int,Int) -> Int -> [[Int]]
makeAMove board tar_cor side = makeAMoveHelper board tar_cor 0 side

makeAMoveHelper :: [[Int]] -> (Int, Int) -> Int -> Int -> [[Int]]
makeAMoveHelper (x:xs) (tar_x, tar_y) curr_x side
 | tar_x == curr_x = (makeAMoveRow x tar_y side) : xs
 | otherwise = x:(makeAMoveHelper xs (tar_x, tar_y) (curr_x+1) side)

makeAMoveRow :: [Int] -> Int -> Int -> [Int]
makeAMoveRow row index side = makeAMoveRowHelper row index 0 side

makeAMoveRowHelper :: [Int] -> Int -> Int -> Int -> [Int]
makeAMoveRowHelper (x:xs) tar_index curr_index side
 | tar_index == curr_index = side : xs
 | otherwise = x:(makeAMoveRowHelper xs tar_index (curr_index+1) side)

{-
 Score a board for one board
 Input: board
 Return: score (int)
-}

scoreBoard :: [[Int]] -> Int
scoreBoard board = (scoreBoardOneSide board 1) - (scoreBoardOneSide board
(-1))

scoreBoardOneSide :: [[Int]] -> Int -> Int
scoreBoardOneSide board side = (scoreBoardOneDirection board side) +
(scoreBoardOneDirection (flipBoard board) side)

scoreOneRow :: [Int] -> Int -> Int
scoreOneRow row side = scoreOneRowHelper row side 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44

45
46
47
48

12/22/21, 6:17 PMMain.hs

Page 2 of 4http://localhost:4649/?mode=haskell

scoreHelper :: Int -> Int
scoreHelper num = case num of
 2 -> 100
 3 -> 200
 4 -> 10000
 _ -> 0

scoreOneRowHelper :: [Int] -> Int -> Int -> Int
scoreOneRowHelper [] side num = scoreHelper num
scoreOneRowHelper row@(x:xs) side num
 | x == side = scoreOneRowHelper xs side (num + 1)
 | otherwise = (scoreHelper num) + (scoreOneRowHelper xs side 0)

scoreBoardOneDirection :: [[Int]] -> Int -> Int
scoreBoardOneDirection board side = sum [scoreOneRow row side | row <- board]

flipBoard :: [[Int]] -> [[Int]]
flipBoard matrix
 | null matrix = [[] | _ <- [1 .. 9]]
 | otherwise = let (x:xs) = matrix in
 [a:b | (a,b) <- (zip x (flipBoard xs))]

{-
 Get all possible moves on the board
 Input: board
 Return: moves [(int,int)]
-}

getAllMoves :: [[Int]] -> [(Int, Int)]
getAllMoves board = getAllMovesHelper board 0

getAllMovesHelper :: [[Int]] -> Int -> [(Int, Int)]
getAllMovesHelper board row_index
 | null board = []
 | otherwise = let (x:xs) = board in
 (getAllMovesOneRow x row_index) ++ (getAllMovesHelper xs (row_index +
1))

getAllMovesOneRow :: [Int] -> Int -> [(Int, Int)]
getAllMovesOneRow row row_index = getAllMovesOneRowHelper row row_index 0

getAllMovesOneRowHelper :: [Int] -> Int -> Int -> [(Int, Int)]
getAllMovesOneRowHelper row row_index curr_index
 | null row = []
 | otherwise = let (x:xs) = row in
 do
 if x == 0
 then (row_index, curr_index):(getAllMovesOneRowHelper xs
row_index (curr_index + 1))

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96

12/22/21, 6:17 PMMain.hs

Page 3 of 4http://localhost:4649/?mode=haskell

row_index (curr_index + 1))
 else getAllMovesOneRowHelper xs row_index (curr_index + 1)

{-
 AI functions
-}

initializeBestScore :: Int -> Int
initializeBestScore side
 | side == 1 = -100000
 | otherwise = 100000

switchSide :: Int -> Int
switchSide side = -side

chooseBetterScore :: Int -> (Int,(Int, Int)) -> (Int,(Int, Int)) -> (Int,
(Int, Int))
chooseBetterScore side (score1, move1) (score2, move2) =
 do
 if (side == 1 && score1 > score2) || (side == -1 && score1 < score2)
 then (score1, move1)
 else
 (score2, move2)

getBestMoveHelper :: [[Int]] -> Int -> Int -> Int -> (Int, Int) -> (Int,(Int,
Int))
getBestMoveHelper board side depth curr_depth move
 | curr_depth == depth = (scoreBoard board, move)
 | otherwise = chooseBestMove allResults side
 where possibleMoves = getAllMoves board
 allResults = parMap rdeepseq (parallelHelper side board depth
curr_depth) possibleMoves

chooseBestMove :: [(Int,(Int, Int))] -> Int -> (Int,(Int, Int))
chooseBestMove [] side | side == 1 = (-100000, (10000,10000))
 | otherwise = (100000, (10000,10000))
chooseBestMove results@(x:xs) side = chooseBetterScore side nextR x
 where nextR = chooseBestMove xs side

parallelHelper :: Int -> [[Int]] -> Int -> Int -> (Int,Int) -> (Int, (Int,
Int))
parallelHelper side board depth curr_depth move = getBestMoveHelper
movedBoard (switchSide side) depth (curr_depth + 1) move
 where movedBoard = makeAMove
board move side

getBestMove :: [[Int]] -> Int -> Int -> (Int, Int)
getBestMove board side depth = snd (getBestMoveHelper board (switchSide side)

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120

121
122
123
124
125

126
127
128
129
130
131
132
133
134

135

136

137
138
139

12/22/21, 6:17 PMMain.hs

Page 4 of 4http://localhost:4649/?mode=haskell

depth 0 (10000, 10000))

-- ================ testing -- ================

board1 = [
 [0,1,1,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,-1,-1,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0]
]

r = getBestMove board1 1 3

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

12/22/21, 6:16 PMAI-serial.hs

Page 1 of 4http://localhost:4649/?mode=haskell

main :: IO()
main = print (r)

{-
 Make a move on the board
 Input: board, tar_cor, side
 Return: board
-}
makeAMove board tar_cor side = makeAMoveHelper board tar_cor 0 side

makeAMoveHelper (x:xs) (tar_x, tar_y) curr_x side
 | tar_x == curr_x = (makeAMoveRow x tar_y side) : xs
 | otherwise = x:(makeAMoveHelper xs (tar_x, tar_y) (curr_x+1) side)

makeAMoveRow row index side = makeAMoveRowHelper row index 0 side

makeAMoveRowHelper (x:xs) tar_index curr_index side
 | tar_index == curr_index = side : xs
 | otherwise = x:(makeAMoveRowHelper xs tar_index (curr_index+1) side)

{-
 Score a board for one board
 Input: board
 Return: score (int)
-}
scoreBoard board = (scoreBoardOneSide board 1) - (scoreBoardOneSide board
(-1))

scoreBoardOneSide board side = (scoreBoardOneDirection board side) +
(scoreBoardOneDirection (flipBoard board) side)

scoreOneRow row side = scoreOneRowHelper row side 0

scoreHelper num = case num of
 2 -> 100
 3 -> 200
 4 -> 1000
 _ -> 0

scoreOneRowHelper row side num
 | null row = scoreHelper num
 | otherwise = let (x:xs) = row in
 do
 if x == side
 then scoreOneRowHelper xs side (num + 1)
 else (scoreHelper num) + (scoreOneRowHelper xs side 0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

12/22/21, 6:16 PMAI-serial.hs

Page 2 of 4http://localhost:4649/?mode=haskell

scoreBoardOneDirection board side = sum [scoreOneRow row side | row <- board]

flipBoard matrix
 | null matrix = [[] | _ <- [1 .. 9]]
 | otherwise = let (x:xs) = matrix in
 [a:b | (a,b) <- (zip x (flipBoard xs))]

{-
 Get all possible moves on the board
 Input: board
 Return: moves [(int,int)]
-}
getAllMoves board = getAllMovesHelper board 0

getAllMovesHelper board row_index
 | null board = []
 | otherwise = let (x:xs) = board in
 (getAllMovesOneRow x row_index) ++ (getAllMovesHelper xs (row_index +
1))

getAllMovesOneRow row row_index = getAllMovesOneRowHelper row row_index 0

getAllMovesOneRowHelper row row_index curr_index
 | null row = []
 | otherwise = let (x:xs) = row in
 do
 if x == 0
 then (row_index, curr_index):(getAllMovesOneRowHelper xs
row_index (curr_index + 1))
 else getAllMovesOneRowHelper xs row_index (curr_index + 1)

{-
 AI functions
-}

initializeBestScore side
 | side == 1 = -100000
 | otherwise = 100000
initializeAlphaBeta side = -1 * (initializeBestScore side)

switchSide side
 | side == 1 = -1
 | otherwise = 1

chooseBetterScore side (score1, move1) (score2, move2) =
 do
 if (side == 1 && score1 > score2) || (side == -1 && score1 < score2)
 then (score1, move1)

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

12/22/21, 6:16 PMAI-serial.hs

Page 3 of 4http://localhost:4649/?mode=haskell

 then (score1, move1)
 else
 (score2, move2)

goThroughMovesHelper moves bestScore bestMove side board depth curr_depth
alpha_beta
 | length moves == 0 = (bestScore, bestMove)
 | otherwise = let (x:xs) = moves in
 let movedBoard = makeAMove board x side in
 let (newBestScore, newBestMove) = getBestMoveHelper
movedBoard (switchSide side) depth (curr_depth + 1) bestScore in
 do
 if (side == 1 && newBestScore > alpha_beta)
|| (side == -1 && newBestScore < alpha_beta)
 then (newBestScore, x)
 else
 let (bestScore_, bestMove_) =
chooseBetterScore side (bestScore, bestMove) (newBestScore, x) in
 goThroughMovesHelper xs bestScore_
bestMove_ side board depth curr_depth alpha_beta

getBestMoveHelper board side depth curr_depth alpha_beta
 | curr_depth == depth = ((scoreBoard board), (-1,-1))
 | otherwise =
 let bestScore = initializeBestScore side in
 let bestMove = (-1,-1) in
 let possibleMoves = getAllMoves board in
 goThroughMovesHelper possibleMoves bestScore bestMove
side board depth curr_depth alpha_beta

getBestMove board side depth =
 let alpha_beta = initializeAlphaBeta side in
 let (_, bestMove) = getBestMoveHelper board side depth 0 alpha_beta
in
 bestMove

-- ================ testing -- ================
boardEmpty = [
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0]
]

96
97
98
99

100

101
102
103
104

105
106

107
108
109

110

111
112
113
114
115
116
117
118

119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

12/22/21, 6:16 PMAI-serial.hs

Page 4 of 4http://localhost:4649/?mode=haskell

board1 = [
 [0,1,1,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,-1,-1,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0]
]

board2 = [
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,0,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0]
]

board3 = [
 [0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,1,1,1,1,1,1],
 [1,1,1,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0]
]

r = getBestMove board1 1 3
b = getBestMove board1 (-1) 3

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

	Introduction
	Project Set-up
	AI Player
	interface
	Basic Idea
	Alpha-beta pruning

	Performances

