
COMSW4995 Parallel Functional Programming

Proposal

Galaxy Simulator

Minhe Zhang (mz2864)

Instructor: Stephen A. Edwards

1 Introduction

Galaxy Simulator(GS) is a Haskell program which simulates celestial move-
ment and visualizes celestial bodies using Gloss. The visualization of the galaxy
should be dynamic which represent the the whole program assuming the uni-
verse is a 2-D plane.

2 Model

2.1 Simplification

1. GS assumes an isolated system which is not affected by any other system.

2. Instead of 3-D which is the real world situation, GS simulates 2-D world.

3. There are only two kinds of celestial body: star and planet.

4. All celestial bodies are considered as mass points. GS doesn’t worry about
collision between celestial bodies.

2.2 Celestial Body

Celestial body defined as algebraic data type Planet in Haskell has the following
properties:

1. Coordinate: float and float

2. Mass: float

3. Velocity: [float]

1

2.3 Gravity

The equation of gravity is

F = G
m1m2

r2

The sign of force Fx and Fy should be the same as x2 − x1 and y2 − y1.

2.4 Acceleration

We use Newton’s second law to calculate acceleration:

F = ma

Then we can have acceleration in different dimension:

ax =
Fx

m

ay =
Fy

m

Because acceleration is a vector, we define that ax has the same sign as Fx.

2.5 Velocity

Let ∆t denote the smallest time interval defined by user or default. The velocity
of body in galaxy should change as

v′x = vx + ax∆t

v′y = vy + ay∆t

2.6 In Haskell

In the source code, celestial body is define as algebraic data type Planet in the
Planet.hs module.

3 Algorithm

The algorithm of GS is pretty straight forward. Let si denote the i-th state of
the system. si can be determined if we know si−1. To identify different si, we
only need status of all bodies.
GS computes m states of n celestial bodies. Let pij denote the j-th body in i-th
state. pij is determined by p(i−1)k, k ∈ {1, . . . , n}. After compute the compound
force from other bodies, GS accelerates pij and make an approximate move. Af-
ter all pik, k ∈ {1, . . . , n} are computed, we say GS finished computation of si.
The time complexity of computing each state is O(n2). The time complexity of
the whole program is O(mn2).
GS generate s0 randomly and starts the simulation. When the sm is computed,
GS terminates.

2

Algorithm 1 GS
n, m, interval ← input

s0 ← randomly generate n bodies
for i in [1,m] do

si ← move(si−1, interval)
end for
return sm

Algorithm 2 move

[pi1, pi2, . . . , pin], interval ← input

for j in [1, n] do
force ← [0, 0]
for k in [1, n] do

if thenj ̸= k
force ← force + Gravity(pij , pik)

end if
end for
p(i+1)j ← Adjust(pij , force,interval)

end for
return [p(i+1)1, p(i+1)2, ..., p(i+1)n]

4 Strategy and Performance

There are several strategies were evaluated and some of which the performance
is very inefficient(static partition, for example). In this report, there are three
strategies worth mentioning. parList, parListChunk, and parListChunk with
depth limitation. Also, in this chapter, how m and n changed performance will
be discussed.

4.1 parList

parList is the first reasonable efficient strategy used in this project. It has the
finest granularity to evaluate [Planet]. It is applied to the core function move.
It generates large amount of sparks. Most of these sparks are overflowed.
When set n = 50,m = 10000, it has a poor performance.

4.1.1 Speedup

This is the speedup figure of parList strategy with finest granularity.

3

The speedup is less than 1.25.

4.1.2 Spark Statistic

This is the spark statistic of parList strategy with finest granularity. It is also
stored in parList-50-10000.csv

parList with n=50, m=10000
thread total time total elapsed total spark converted overflowed dud GC fizzled
-N1 4.290 4.811 500100 0 152703 0 58 3275
-N2 11.961 6.627 500100 3431 152535 0 0 70
-N3 12.664 5.014 500100 3026 152949 0 0 61
-N4 12.953 3.988 500100 3040 152935 0 0 61
-N5 15.588 4.087 500100 3111 152864 0 0 61
-N6 18.152 4.160 500100 3169 169189 0 0 62
-N7 19.801 3.954 500100 4559 167772 0 0 89
-N8 21.338 3.933 500100 7707 172754 0 0 151

4

4.2 parListChunk

Rather than sparking every element in list, parListChunk sparks chunks of
elements in list. The performance of parListChunk is not only related to the
input, but also related to the size of chunk. parListChunk is so far the best
strategy in this project.

4.2.1 Speedup

This is the speedup figure of parListChunk strategy with coarse granularity.

The speedup starts to exceed 1.5. This is a better result than parList but
still far from theoretical limitation.

4.2.2 Spark Statistic

This is the spark statistic of parListChunk strategy with coarse granularity. It
is also stored in chunk-50-10000-size5.csv

5

parListChunk with chunk size=5, n=50, m=10000
thread total time total elapsed total spark converted overflowed dud GC fizzled
-N1 4.290 4.811 500100 0 152703 0 58 3275
-N2 11.961 6.627 500100 3431 152535 0 0 70
-N3 12.664 5.014 500100 3026 152949 0 0 61
-N4 12.953 3.988 500100 3040 152935 0 0 61
-N5 15.588 4.087 500100 3111 152864 0 0 61
-N6 18.152 4.160 500100 3169 169189 0 0 62
-N7 19.801 3.954 500100 4559 167772 0 0 89
-N8 21.338 3.933 500100 7707 172754 0 0 151

4.3 Depth Limitation

After a few attempts, we can conclude that depth has nothing to do with
speedup and running time.

4.3.1 Speedup

This is the speedup figure of speed up when we simulate 50 bodies in 10000
steps. The strategy it uses is parListChunk and the size of chunk is 5. The x
axis is the number of threads and the depth is set to 1000.

4.4 How m and n changes performance

The speedup relies on the input parameters heavily. These are two diagram
from threadscope.

6

4.4.1 n=50, m=10000

4.4.2 n=1500, m=10

At the first glance, the first diagram is better than the latter one. However,
the speedup of the first one is 1.5 the second one is 2.5. This is the detail after
zooming in.

7

50 bodies and 10000 steps:

1500 bodies and 10 steps:

We can tell from the figures above that when the number of body is larger, the
better usage will be achieved.

8

Also, we can take a look at what happened when serial waiting: 50 bodies
and 10000 steps:

1500 bodies and 10 steps:

Although it costs more at a single GC or waiting if we set n large, it’s less
frequent. The parallel proportion is larger when we set n larger. This is the 2.5
speed up when we set n = 1500 and m = 10:

9

5 Visualization

The result of visualization should be dynamic. After a certain time interval, the
graph of current state of galaxy should update. It should show every existing
celestial body as dot.

6 What’s Next

1. Barnes-Hut algorithm. This will improve the time complexity from n2 to
nlog(n).

2. Interactive Simulation.

10

7 Reference

1. http://www.cs.columbia.edu/ sedwards/classes/2021/4995-fall/proposals/Galaxy.pdf

2. http://www.cs.columbia.edu/ sedwards/classes/2020/4995-fall/reports/NBody.pdf

3. https://hackage.haskell.org/package/gloss-1.13.2.1/docs/Graphics-Gloss-Interface-
Pure-Simulate.html

4. http://www.cs.columbia.edu/ sedwards/classes/2021/4995-fall/strategies.pdf

5. http://www.cs.columbia.edu/ sedwards/classes/2021/4995-fall/laziness.pdf

6. https://physics.princeton.edu// fpretori/Nbody/intro.htm

8 Source File

{-

This is the entry file which starts the whole program.

-}

import Control.Parallel(par, pseq)

-- import Control.DeepSeq(deepseq)

import System.Environment

import System.Random

import Control.Parallel.Strategies

import qualified Planet as P

import qualified Laws as L

import qualified Visualize as V

chunkSize :: Int

chunkSize = 5

depth :: Int

depth = 2000

getSeeds :: Int -> IO [Float]

getSeeds n = sequence $ replicate n $ randomRIO (0,1::Float)

genPlanets :: [Float] -> [Float] -> [P.Planet]

genPlanets [] [] = []

genPlanets [s1] [s2] = [P.genPlanet s1 s2]

genPlanets l1 l2 = (P.genPlanet h1 h2) : genPlanets t1 t2

where h1 = head l1

h2 = head l2

11

t1 = tail l1

t2 = tail l2

-- Trivial approach, doesn't work.

trivial :: Int -> Float -> [P.Planet] -> [P.Planet]

trivial 0 _ ps = ps

trivial 1 i ps = [L.move p ps i| p <- ps]

trivial s i ps = trivial (s - 1) i ps'

where ps' = [L.move p ps i| p <- ps]

-- Static partitioning

staticPart :: Int -> Float -> [P.Planet] -> [P.Planet]

staticPart 0 _ ps = ps

staticPart 1 i ps = [L.move p ps i| p <- ps]

staticPart s i ps = staticPart (s - 1) i ps'

where ps1' = [L.move p ps i| p <- ps1]

ps2' = [L.move p ps i| p <- ps2]

ps' = ps1' `par` ps2' `pseq` (ps1' ++ ps2')

(ps1, ps2) = splitAt (length ps `div` 2) ps

-- Finest granularity

finePart :: Int -> Float -> [P.Planet] -> [P.Planet]

finePart 0 _ ps = ps

finePart 1 i ps = [L.move p ps i| p <- ps] `using` parList rseq

finePart s i ps = finePart (s - 1) i ps'

where ps' = [L.move p ps i| p <- ps] `using` parList rseq

-- parListChunk

chunkPart :: Int -> Float -> [P.Planet] -> [P.Planet]

chunkPart 0 _ ps = ps

chunkPart 1 i ps = [L.move p ps i| p <- ps] `using` parListChunk

chunkSize rdeepseq↪→

chunkPart s i ps = chunkPart (s - 1) i ps'

where ps' = [L.move p ps i| p <- ps] `using` parListChunk

chunkSize rdeepseq↪→

-- depth limited

depthPart :: Int -> Int -> Float -> [P.Planet] -> [P.Planet]

depthPart 0 _ _ ps = ps

depthPart s 0 i ps = chunkPart s i ps

-- depthPart s 0 i ps = trivial s i ps

12

depthPart s d i ps = depthPart (s - 1) (d - 1) i ps'

where ps' = [L.move p ps i| p <- ps] `using`

parListChunk chunkSize rdeepseq↪→

forceEval :: [P.Planet] -> IO ()

forceEval ps = do

print $ length $ filter ((==) (P.Planet [0, 0] 0 0 0)) ps

main :: IO ()

main = do

args <- getArgs

let [n, s, i, mode] = args

let planetNum = read n :: Int

let steps = read s :: Int

let interval = read i :: Float

seedList1 <- getSeeds planetNum

seedList2 <- getSeeds planetNum

let planets = (genPlanets (seedList1) (seedList2)) `using`

parList rseq↪→

-- let planets = (genPlanets (seedList1 `using` parList rseq)

(seedList2 `using` parList rseq)) `using` parList rseq↪→

case mode of

"v" -> do

let star = P.Planet [0, 0] (1e5 * 7) 0 0

V.runSimulation (star : planets)

"trivial" -> do

let state = (trivial steps interval planets)

forceEval state

"static" -> do

let state = (staticPart steps interval planets)

forceEval state

"parList" -> do

let state = (finePart steps interval planets) `using`

parList rseq↪→

forceEval state

"chunk" -> do

let state = (chunkPart steps interval planets) `using`

parList rseq↪→

forceEval state

"depth" -> do

let state = (depthPart steps depth interval planets)

`using` parList rseq↪→

forceEval state

_ -> do

13

print $ "Usage: ./Galaxy <Number of Bodies> <Number of

Steps> <Time Inteval> <mode> +RTS -N<Number of Threads>

-s"

↪→

↪→

{-

This module defines the basic laws of physics.

-}

module Laws (

move,

nextState

) where

import Planet

import Control.Parallel.Strategies

import Control.Parallel(par, pseq)

type Force = Float

type Acc = Float

type Vel = Float

type Time = Float

{-

Gravitational constant.

-}

g :: Float

g = 10

{-

This function takes two Planets as input, computes

the gravity from p1 to p2, and returns a

list of float value which represents Fx and Fy.

Gravity formula F = g * m1 * m2 / r^2

-}

gravity :: Planet -> Planet -> [Force]

gravity p1 p2 = [if x2 > x1 then fx else -fx, if y2 > y1 then fy

else -fy]↪→

where fx = if x1 == x2 then 0

else g * m1 * m2 / rSqr

fy = if y1 == y2 then 0

else g * m1 * m2 / rSqr

x1 = posX p1

x2 = posX p2

y1 = posY p1

y2 = posY p2

m1 = mass p1

14

m2 = mass p2

rSqr = (fSqr (x1 - x2)) + (fSqr (y1 - y2))

{-

Takes a planet and a pair of forces.

Returns a pair of velocities.

-}

acceleration :: Planet -> [Force] -> [Acc]

acceleration p fxy = map acc fxy

where acc f = f / (mass p)

{-

Change velocities.

-}

accelerate :: [Vel] -> [Acc] -> Time -> [Vel]

accelerate vs as t = zipWith (\v a -> v + a * t) vs as

{-

Used for visualization.

-}

nextState :: [Planet] -> Double -> [Planet]

nextState ps _ = [move p ps (1/100) | p <- ps] `using` parList

rseq↪→

move :: Planet -> [Planet] -> Time -> Planet

-- move p ps t = moveHelper 100 p ps (t / 100)

move p ps t = moveHelper 1 p ps t

moveHelper :: Int -> Planet -> [Planet] -> Time -> Planet

moveHelper 0 p ps t = p

moveHelper n p ps t = (moveHelper (n - 1) p' ps t)

where p' = Planet vs m x y

vs = accelerate (velocity p) as t

as = acceleration p fs

-- fs = foldr (zipWith (+)) [0, 0] ((map

(gravity p) ps) `using` parList rseq)↪→

fs = foldr (zipWith (+)) [0, 0] (map (gravity p)

ps)↪→

[x, y] = zipWith (\pos v -> pos + v * t) [posX p,

posY p] vs↪→

m = mass p

fSqr :: Float -> Float

fSqr x = x * x

{-

15

This module defines and exports data type Planet.

-}

module Planet (

Planet(..),

genPlanet

) where

import Control.DeepSeq

{-

Units:

velocity m * s^-1

mass kg^-1

posX m

poxY m

-}

data Planet = Planet {

velocity :: ![Float],

mass :: !Float,

posX :: !Float,

posY :: !Float

} deriving (Show, Eq)

instance NFData Planet where

rnf (Planet v m x y) = rnf v `deepseq` rnf m `deepseq` rnf x

`deepseq` rnf y↪→

{-

Generate a planet from two seed which are randomly generated.

-}

genPlanet :: Float -> Float -> Planet

genPlanet s1 s2 = Planet [vx, vy] m x y

where vx = if s1 > 0.5 then (-absVx) else absVx

vy = -(x * vx / y)

m = 1e2 + d * 1e2 + s1 * 1e1

x = -(720 / 4) + s1 * (720 / 2)

y = -(720 / 4) + s2 * (720 / 2)

-- x = if s1 > 0.5 then 20 + s1 * 200 else -(20 + s1 *

200)↪→

-- y = if s2 > 0.5 then 20 + s2 * 200 else -(20 + s2 *

200)↪→

absVx = 1 * 1e2 + s1 * 1e1 + (1 - d) * 1e1

d = ((abs x) + (abs y)) / 720 / 2

{-

16

This file

-}

module Visualize (

runSimulation,

windowSize

) where

import GHC.Float

import Graphics.Gloss

import Control.Parallel.Strategies

import qualified Planet as P

import qualified Laws as L

windowSize :: Int

windowSize = 720

drawPlanet :: P.Planet -> Picture

drawPlanet p = Color white $ Translate x y (circleSolid

(realToFrac $ 0.5 * log (P.mass p)))↪→

where x = realToFrac $ P.posX p

y = realToFrac $ P.posY p

drawPlanets :: [P.Planet] -> [Picture]

drawPlanets ps = map drawPlanet ps

runSimulation :: [P.Planet] -> IO ()

runSimulation ps = simulate (InWindow "Galaxy Simulation"

(windowSize, windowSize) (100, 100))↪→

black 60

ps

(\ps' -> pictures $ drawPlanets ps')

(_ dt ps' -> L.nextState ps' (float2Double

dt))↪→

17

