
Parallelizing 2048

Matthew Broughton - mb4207, Kent Hall - kjh2166

December 2021

1 Background - What is 2048?

2048 is a game where players move tiles valued at powers of 2 around a 4x4 grid
while trying create a tile of value 2048. Every turn, a 2 or 4 valued tile appears
on the board. The player can then shift the tiles in one of 4 directions. The tiles
move until they hit the edge of the board or another tile. If two tiles collide and
both are the same value, they merge and the resulting tile has double the value.
In this fashion the player can manipulate the tiles to create as many high value
tiles as possible. While the game is considered won when a tile of value 2048 is
created, the player can continue playing the game until no possible moves are
left. Play here https://play2048.co/ (it’s fun).

2 Base Algorithm - Expectiminimax

The optimal algorithm for an AI to run off of to try and win a game of 2048 is
expectiminimax. Expectiminimax is a variation of minimax, which is a adver-
sarial algorithm for choosing the next move in a game. This incorrectly assumes
that the computer is intentionally placing new tiles in antagonistic ways against
the player, but the algorithm still has the same result of picking the optimal
move (most of the time). In minimax, the algorithm creates a decision tree
where each level represents the player’s or the computer’s turn (alternating),
and each node represents an action. Each node contains a value corresponding
to how good the board is for the player, computed via some heuristic. The al-
gorithm then finds the optimal move for the current turn by searching the tree
(via DFS) for the move that not only maximizes the board’s value now, but
also maximizes it over the course of the next X turns while also minimizing the
possible damage by the computer over the same time frame. Expectiminimax
adds in an additional level to the tree that simulates random element, for our
purposes it’ll simulate whether a 2 or 4 tile is placed.

The heuristics we use to decide whether or not a board is good are:

• Smoothness - The more tiles that have neighboring tiles of the same value,
the better the board is. Tiles can only merge if they have the same value,
so this heuristic promotes mergeability.

1



• Monotonicity - The more rows/columns that are monotonically decreasing
from left to right/up to down, the better the board is. This keeps the board
ordered and larger tiles off to the left/upper sides, allowing smaller tiles
to more easily merge in the open bottom right.

• Weight - Arbitrary weights are multiplied with the values of each tile, so
the more higher valued tiles there are, the better the board is. Promotes
having bigger tiles, and the weights are arranged in such a way (with the
largest weight in the upper left corner) to promote monotonicity as well.

• Number of Empty Spaces - The fewer tiles there are, the better the board
is. Promotes a clutter-free board.

• 2048 - If a possible board has 2048 on it, it gets an extremely high score.
Promotes winning the game.

This algorithm is essentially just a lengthy tree traversal, meaning that the
time taken increases exponentially with each level added to the tree. Since
deeper trees means a higher win rate, speeding up this traversal is our top
priority.

3 Sequential Optimization - AB Pruning

While the focus of this paper is speed-ups via parallelization, there is a well-
known, sequential, optimization for this algorithm. This is Alpha-Beta prun-
ing, which removes branches of the tree that cannot possibly be optimal from
consideration as the algorithm runs. We provide a well put explanation from
Wikipedia: ”The algorithm maintains two values, alpha and beta, which respec-
tively represent the minimum score that the maximizing player is assured of and
the maximum score that the minimizing player is assured of. Initially, alpha is
negative infinity and beta is positive infinity, i.e. both players start with their
worst possible score. Whenever the maximum score that the minimizing player
(i.e. the ”beta” player) is assured of becomes less than the minimum score that
the maximizing player (i.e., the ”alpha” player) is assured of (i.e. beta ¡ alpha),
the maximizing player need not consider further descendants of this node, as
they will never be reached in the actual play.”

Something to note is that this algorithm can not be parallelized without
significant editing. Since the Alpha/Beta pair is passed between sibling nodes
from the parent node, you are not able to traverse down separate child nodes
in parallel without resetting the Alpha/Beta pair, which limits the amount of
pruning you can perform and thus the amount of speed-ups you will gain from
this algorithm.

While we will focus on mostly on speed-ups over the base Expectiminimax
algorithm, we will also compare to AB Pruning. We will also incorporate limited
AB Pruning into our parallelization algorithms, as you will see in the next
section.

2



4 Parallel Optimization - parMap and Brothers

The obvious place to start parallelizing is with the base algorithm. Since nothing
passes between child nodes from a parent node, we can, for each parent, perform
all traversals from their children down in parallel. For example, in implemen-
tation at a maximize node, we can simply call ‘parMap rpar (minimize) [list
of child nodes]‘. Naively, we could do this for every maximize, minimize, and
chance node in the tree, but too much parallelization may create too much over-
head. Thus we may need to limit how deep our parallelization goes in the tree.
This will be our base parallelization algorithm, which we will call Par+Base.

The logical follow up to this algorithm is adding AB Pruning to it. While
we cannot simply add pruning to entire tree as discussed before, what we can
do is go parallel to a certain depth, then once the parallelization stops, we can
perform pruning on the available subtrees. While there won’t be as significant
pruning as there could be if we recieved Alpha/Beta values from the tree’s root,
we hope that our limited pruning will cause enough of a speed-up to blaze past
the standard sequential AB Pruning. We will call this version Par+AB.

Admittedly, Par+AB is a rather simple way of combining AB Pruning and
parallelization. What if there was a better way that leverages the power of
AB Pruning a little more effectively? Here, we present the Younger Broth-
ers Wait Concept, which we will call Brothers for short. First found here
(https://www.chessprogramming.org/Young Brothers Wait Concept), Brothers
changes how all the nodes are evaluated slightly. First, one child node (the ’el-
dest’) is chosen to be fully evaluated with no parallelization whatsoever. Once
this child node is evaluated, the Alpha/Beta bounds for the remaining children
are sharpened significantly. We can then evaluate the remaining (’younger’)
children in parallel with the tighter bounds. Like before, we can go parallel to
a set depth here to ensure that we do not get overwhelmed by overhead.

5 Parallel Evaluation Metrics - Spark Conver-
sion

The best way to evaluate all of these algorithms is clearly by time, as this is
a race to evaluate possible moves the fastest. However, for our parallel algo-
rithms, we have a few more things we can measure on. Chief among these is
the percentage of converted sparks. A spark is converted when it completes its
task; an unconverted spark is (justly) killed prior to task completion, meaning
that any work it performed was wasted and better spent on a spark that could
be converted. While time is the ultimate judge of how worthwhile our parallel
algorithms are, the spark conversion rate can point to where our implementation
could possibly be improved.

3



6 Results - Tuning Parallel Parameters

Here, we present preliminary results for the parallelized algorithms so we can
ascertain the best parameters to use for each of them before stacking them up
against the sequentials. The two parameters are Par Depth and Number of
Cores. Par Depth is how many levels of the tree we have parallelized for a given
run, and Number of Cores is of course how many cores we run the AI on.

6.1 Par Depth

We ran the AI with varying levels of par depth from 0 to the max depth over
around 100 trials for each level and measured time and spark conversion rate.
We set the number of cores to 8 and the max depth to 7 for all trials.

4



From both graphs, we can clearly see for Par+Base and Par+AB that 2 levels
of par depth is clearly the fastest and most efficient. For Brothers, however, all
of the times for each par depth (aside from 0) are fairly close together around
10 seconds, with par depth 2 being the lowest at 10.06sec. We only see a real
breakaway on the spark conversion graph, where a depth of 1 has the highest
rate at around 52%. While 52% is not terribly efficient as is, especially when
compared to Par+Base and Par+AB, we will choose 1 as the optimal par depth
for this algorithm.

6.2 Number of Cores

We ran the AI with 1 to 8 cores over around 100 trials for each core and measured
time and spark conversion rate. We set the par depths to the values found in
the previous section and the max depth to 7 for all trials.

5



6



nCores = 5

7 Final Results

With ideal parameters for each algorithm, we find that basic Expectiminimax
sees the greatest benefit from parallelization, with roughly a 4x speed improve-
ment. AB Pruning improves this algorithm substantially in sequential execution,
so the improvement from parallelization is more modest, but not insignificant
(at about 2x). Incorporating the Younger Brothers Wait Concept gets us our
fastest results, improving on parallelized AB Pruning even further. In any case,
it’s clear that additional threads of concurrent execution go a long way toward
winning 2048.

7



Base 92.95407920792074 s
AB 30.68809677419355 s

Par+Base 21.447784313725496 s
Par+AB 15.334137254901966 s
Brothers 9.028725490196079 s

8 Further Work

One lingering mystery is the question of why Brothers peaks at a 50% spark
conversion rate, as opposed to Par+Base and Par+AB hitting 80% spark con-
version. This is despite the fact that, at the end of the day, Brothers performs
significantly better than both. We believe this could indicate there is additional
headroom whereby further parallelization performance gains might be attain-
able, but this is uncertain; at a glance, it seems as though the nature of the
algorithm might fundamentally be limiting how effective the parallelization is,
but this is definitely a point of inquiry to look into in the future.

9 Max Depth

The focus of this report is on the performance implications of parallelization, so
we didn’t find it relevant to include details on our experimentation in finding

8



the optimal max depth; that said, the data is included below for completeness.

9



10 Code Listing

10.1 AlphaBetaAi.hs

module AlphaBetaAi where

import Board

import Heuristics

minInt :: Double

minInt = 0

maxInt :: Double

maxInt = 1073741824

defaultAB :: (Double, Double)

defaultAB = (minInt, maxInt)

abPlayerMove :: Int -> Board -> Board

abPlayerMove maxD b = snd $ abMaximize (0,maxD) defaultAB b

alphaBetaMax :: (Int,Int) -> Board -> ([Double], Board) -> ([Double], Board)

10



alphaBetaMax (d,maxD) board ([a, b, prevOut], prevBoard)

| localMax > a = ([localMax, b, localMax], localBoard)

| otherwise = ([a, b, localMax], localBoard)

where score = if prevOut < b

then abChanceTime (d+1,maxD) (a,b) board

else minInt

localMax = if score >= prevOut then score else prevOut

localBoard = if score >= prevOut then board else prevBoard

alphaBetaMax _ _ _ = ([],[])

abMaximize :: (Int,Int) -> (Double, Double) -> Board -> (Double, Board)

abMaximize (d,maxD) (a,b) board

| d >= maxD = (calcScore board, board)

| otherwise =

let f = foldr (alphaBetaMax (d,maxD)) ([a, b, minInt], []) in

let ([_, _, lMax], localBoard) = f $ getAvailableMoves board in

if lMax == minInt then (calcScore board, board) else (lMax, localBoard)

abChanceTime :: (Int,Int) -> (Double, Double) -> Board -> Double

abChanceTime (d,maxD) ab board

| d >= maxD = calcScore board

| otherwise = let f = (abMinimize (d+1,maxD) ab board) in

sum $ zipWith (*) [0.9, 0.1] $ map f [2,4]

alphaBetaMin :: (Int,Int) -> Board -> [Double] -> [Double]

alphaBetaMin (d,maxD) board [a, b, prevOut]

| localMin < b = [a, localMin, localMin]

| otherwise = [a, b, localMin]

where score = if prevOut > a

then fst $ abMaximize (d+1,maxD) (a,b) board

else maxInt

localMin = if score <= prevOut then score else prevOut

alphaBetaMin _ _ _ = []

abMinimize :: (Int,Int) -> (Double, Double) -> Board -> Tile -> Double

abMinimize (d,maxD) (a,b) board tile

| d >= maxD = calcScore board

| otherwise =

let nxt = map (cpuMoveDet board tile) $ getAvailableTileIndices board in

if length nxt == 0 then calcScore board else

(foldr (alphaBetaMin (d,maxD)) [a, b, maxInt] nxt) !! 2

10.2 BaseAi.hs

module BaseAi where

11



import Board

import Heuristics

import AlphaBetaAi

import Control.Parallel.Strategies

basePlayerMove :: Bool -> (Int,Int) -> Board -> Board

basePlayerMove isAB (parD,maxD) bd = snd $ maximize isAB (0, parD, maxD) bd

maximize :: Bool -> (Int, Int, Int) -> Board -> (Double, Board)

maximize isAB (d, parD, maxD) board

| d >= maxD = (calcScore board, board)

| otherwise =

let moves = getAvailableMoves board in

let scoreB = map’ (\bd -> (ct’ bd, bd)) moves in

if length moves == 0 then (calcScore board, board) else

foldr (\x acc -> if ((fst x) > (fst acc)) then x else acc) ((-1),[]) scoreB

where map’ = if d > parD then map else parMap rpar

ct’ = if (d >= parD) && isAB then abChanceTime (d+1,maxD) defaultAB else chanceTime isAB (d+1,parD,maxD)

chanceTime :: Bool -> (Int, Int, Int) -> Board -> Double

chanceTime isAB (d, parD, maxD) board

| d >= maxD = calcScore board

| otherwise =

let f = (min’ board) in

sum $ zipWith (*) [0.9, 0.1] $ map’ f [2,4]

where map’ = if d > parD then map else parMap rpar

min’ = if (d >= parD) && isAB then abMinimize (d+1,maxD) defaultAB else minimize isAB (d+1,parD,maxD)

minimize :: Bool -> (Int, Int, Int) -> Board -> Tile -> Double

minimize isAB (d, parD, maxD) board tile

| d >= maxD = calcScore board

| otherwise =

let nxt = map (cpuMoveDet board tile) $ getAvailableTileIndices board in

let scoreB = map’ (\bd -> fst $ max’ bd) nxt in

if length nxt == 0 then calcScore board else minimum scoreB

where map’ = if d > parD then map else parMap rpar

max’ = if (d >= parD) && isAB then abMaximize (d+1,maxD) defaultAB else maximize isAB (d+1,parD,maxD)

10.3 Board.hs

module Board where

import System.Random

import Data.List (transpose)

type Tile = Int

12



type Board = [Tile]

type TwoDBoard = [[Tile]]

getAvailableTileIndices :: Board -> [Int]

getAvailableTileIndices board =

snd $ unzip $ filter (\x->fst x == 0) $ zip board $ take 16 $ iterate (+1) 0

-- places a 2 or 4 tile in a random availabe location

cpuMoveRng :: RandomGen rng => Board -> rng -> Board

cpuMoveRng board gen =

[if t2 == idx then val else t1 | (t1,t2) <- zip board $ take 16 $ iterate (+1) 0]

where

idx = (getAvailableTileIndices board) !! ridx

ridx = fst $ randomR (0,(length $ getAvailableTileIndices board)-1) gen

val = if (fst $ randomR (0, 9 :: Int) gen)==0 then 4 else 2

cpuMoveDet :: Board -> Int -> Int -> Board

cpuMoveDet board val idx=

[if t2 == idx then val else t1 | (t1,t2) <- zip board $ take 16 $ iterate (+1) 0]

-- rowMap implemenation stolen from splitEvery

rowMap :: Board -> TwoDBoard

rowMap [] = []

rowMap b = let (row,rst) = splitAt 4 b in row : rowMap rst

mergeTiles :: [Tile] -> [Tile]

mergeTiles [] = []

mergeTiles (hd:nx:tl) | hd == nx = mergeTiles ((2*hd):tl)

mergeTiles (hd:tl) | otherwise = hd : mergeTiles tl

move :: Board -> Int -> Board

move b dir

| dir == 0 = columnUnmap $ map (mergeMaster) $ columnMap b

| dir == 1 = columnUnmap $ map (reverse.mergeMaster.reverse) $ columnMap b

| dir == 2 = rowUnmap $ map (mergeMaster) $ rowMap b

| otherwise = rowUnmap $ map (reverse.mergeMaster.reverse) $ rowMap b

where zFilt = filter (/=0)

pad l = l ++ replicate (4 - (length (filter (/=0) l))) 0

mergeMaster = pad.mergeTiles.zFilt

rowUnmap = concat

columnMap = transpose.rowMap

columnUnmap = rowUnmap.transpose

-- up down left right

getAvailableMoves :: Board -> [Board]

13



getAvailableMoves b = filter (/=b) $ map (move b) [0,1,2,3]

printBoard :: Board -> IO ()

printBoard b = do

let rb = rowMap b

putStrLn "///////////////////"

putStrLn $ show (rb!!0)

putStrLn $ show (rb!!1)

putStrLn $ show (rb!!2)

putStrLn $ show (rb!!3)

putStrLn "///////////////////"

10.4 Heuristics.hs

module Heuristics where

import Board

import Data.List (transpose, foldl’)

-- these numbers came to me in a dream

calcScore :: Board -> Double

calcScore b = (1 * (smoothness b) +

0.15 * (monotonicity b) +

1.2 * (fromIntegral $ length $ getAvailableTileIndices b) +

0.25 * (logBase 2 $ weight b) +

9999 * (greatSuccess b))

smoothC :: [Tile] -> Int -> Int

smoothC (f:s:tl) acc | f == s = smoothC (s:tl) (acc+1)

smoothC (_:s:tl) acc | otherwise = smoothC (s:tl) acc

smoothC _ acc = acc

smoothness :: Board -> Double

smoothness b = fromIntegral $

(foldr smoothC 0 $ rowMap b) +

(foldr smoothC 0 $ (transpose.rowMap) b)

gintonic :: (Int,Int) -> [Tile] -> (Int,Int)

gintonic (tot,bon) (f:s:tl) | f >= s = gintonic (tot+bon,bon+1) (s:tl)

gintonic acc (f:s:_) | f < s = acc

gintonic acc _ = acc

monotonicity :: Board -> Double

monotonicity b = fromIntegral $

(fst $ foldl’ gintonic (0,0) $ rowMap b) +

(fst $ foldl’ gintonic (0,0) $ (transpose.rowMap) b)

14



weight :: Board -> Double

weight b = fromIntegral $

foldr (+) 0 $ zipWith (*) b $ map weightMap $ wHeatmap (0::Int)

where wHeatmap n

| n == 4 = []

| otherwise = (map (n+) [0,1,2,3]) ++ (wHeatmap (n+1))

weightMap n

| n == 0 = 1000000

| n == 1 = 1000

| n == 2 = 100

| n == 3 = 10

| otherwise = 1

greatSuccess :: Board -> Double

greatSuccess b

| maximum b == 2048 = 99999999

| otherwise = 0

10.5 KyoudAi.hs

module KyoudAi where

import Board

import AlphaBetaAi

import Heuristics

import Control.Parallel.Strategies

brotherMove :: (Int,Int) -> Board -> Board

brotherMove (parD,maxD) bd = snd $ maximize (0, parD, maxD) defaultAB bd

maximize :: (Int, Int, Int) -> (Double, Double) -> Board -> (Double, Board)

maximize (d, parD, maxD) (a,b) board

| d >= maxD = (calcScore board, board)

| otherwise = if length bds == 0 then (calcScore board, board) else

getScores

where

bds = getAvailableMoves board

s = chanceTime (d+1,parD,maxD) (a,b) $ head bds

getScores

| s >= b = (s, head bds)

| s > a = accum (s,b)

| otherwise = accum (a,b)

accum ab =

let scoreB = (s, head bds) : (parMap rseq (\bd -> (ct’ ab bd, bd)) $ tail bds) in

foldr (\x acc -> if ((fst x) > (fst acc)) then x else acc) ((-1),[]) scoreB

15



ct’ = if (d > parD) then abChanceTime (d+1,maxD) else chanceTime (d+1,parD,maxD)

chanceTime :: (Int, Int, Int) -> (Double, Double) -> Board -> Double

chanceTime (d, parD, maxD) ab board

| d >= maxD = calcScore board

| otherwise = let f = (min’ ab board) in

sum $ zipWith (*) [0.9, 0.1] $ parMap rseq f [2,4]

where min’ = if d > parD then abMinimize (d+1,maxD) else minimize (d+1,parD,maxD)

minimize :: (Int,Int,Int) -> (Double, Double) -> Board -> Tile -> Double

minimize (d, parD, maxD) (a,b) board tile

| d >= maxD = calcScore board

| otherwise = if length bds == 0 then calcScore board else

getScores

where

bds = map (cpuMoveDet board tile) $ getAvailableTileIndices board

s = fst $ maximize (d+1,parD,maxD) (a,b) $ head bds

getScores

| s <= a = s

| s < b = accum (a,s)

| otherwise = accum (a,b)

accum ab =

let scoreB = s : (parMap rseq (\bd -> fst $ max’ ab bd) $ tail bds) in

minimum scoreB

max’ = if d > parD then abMaximize (d+1,maxD) else maximize (d+1,parD,maxD)

16


