
yc3858 Yufan Chen

Introduction
This project uses Expectimax algorithm to implement an AI playing the game 2048. The goal of the AI is to
generate an 2048 tile in the board.

2048

2048 is played on a plain 4×4 grid, with numbered tiles that slide when a player moves them using the four
arrow keys. Every turn, a new tile appears in an empty spot on the board with a probability of 0.9 to be 2
and 0.1 to be 4. Tiles slide as far as possible in the chosen direction until they are stopped by either another
tile or the edge of the grid. If two tiles of the same number collide while moving, they will merge into a tile
with the total value of the two tiles that collided.

Expectimax

The expectimax algorithm is a variation of the Minimax algorithm. While Minimax assumes that the
adversary(the minimizer) plays optimally, the Expectimax doesn’t. This is useful for modeling environments
where adversary agents are not optimal, or their actions are based on chance.

For example, in the search tree above, the minimax agent will choose the left child node because 10 > 9.
However, if we are using expectimax, and if we assume that the adversary is not smart at all and can only
make the decision randomly, then the expectimax agent will choose the right child node. This is because the
expected result value of choosing the left one is , while the expected result value
of choosing the right one is .

Implementation
Sequential Implementation

We can split the program into several different components:

Game Implementation

First, we need to make a playable game board, which accepts the move command, move and merge tiles,
and randomly spawn a new tile.

Moving and Merging the Tiles

For moving towards left, we can simply iterate each row of the board, filter out all the empty slots, and then
iterate through each tile in a single row. If the current tile has the same value with the next one, remove
both of them and then add the merged one into the original place.

For moving towards other directions, just rotate the board so that we can reuse the moveLeft function
above, and then rotate the board back.

moveLeft :: [[Int]] -> [[Int]]

moveLeft board = map moveRow board where

 moveRow :: [Int] -> [Int]

 moveRow row = let merged = merge [x | x <- row, x /= 0] [] in

 reverse $ replicate (4-length merged) 0 ++ merged

 merge :: [Int] -> [Int] -> [Int]

 merge [] acc = acc

 merge [x] acc = x:acc

 merge (f:s:xs) acc

 | f == s = merge xs (f*2:acc)

 | otherwise = merge (s:xs) (f:acc)

1

2

3

4

5

6

7

8

9

10

11

Spawning a New Tile

According to the probability model, it has 90% percent to generate a 2 and 10% to generate 4. The position
is chosen randomly among all empty slots.

Therefore, we can first collect indices of all empty slots, and randomly choose one slot among them, and
then choose the value for that new tile under the probability model.

Agent Implementation

To implement the expectimax agent, we need a heuristic policy and a search function.

Heuristic Function

I used the heuristic function from https://stackoverflow.com/a/28824788.

Intuitively, we want to keep the largest tile at the corner, and organize tiles descendingly in a sort of snake.
For example, this is an ideal situation:

transpose :: [[Int]] -> [[Int]]

transpose [r1, r2, r3, r4] = map (\(x1,x2,x3,x4) -> [x1,x2,x3,x4]) $ zip4 r1 r2 r3

r4

transpose _ = error "can not transpose a non 4x4 matrix"

moveDown :: [[Int]] -> [[Int]]

moveDown board = reverse $ moveUp $ reverse board

moveUp :: [[Int]] -> [[Int]]

moveUp board = transpose $ moveLeft $ transpose board

moveRight :: [[Int]] -> [[Int]]

moveRight board = map reverse $ moveLeft $ map reverse board

1

2

3

4

5

6

7

8

9

10

11

12

fill :: [[Int]] -> Int -> Int -> Int -> [[Int]]

fill board x y v = prev ++ (newRow : next) where

 (prev, row:next) = splitAt x board

 newRow = take y row ++ v : drop (y+1) row

spawn :: [[Int]] -> IO [[Int]]

spawn board = do

 let slots = [(x, y) | (x, row) <- zip [0..] board, (y, val) <- zip [0..] row,

val == 0]

 case length slots of

 0 -> pure board

 _ -> do

 val <- randomRIO (1, 10::Int) >>= pure . (\x -> if x == 1 then 4 else 2)

 (xpos, ypos) <- randomRIO (0, length slots-1) >>= pure . (slots !!)

 return $ fill board xpos ypos val

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

https://stackoverflow.com/a/28824788

The head of the "snake" is at bottom-left, and the tail is at bottom-right.

Therefore, under the implementation, we set the top-left slot to have the largest weight. The weights
descend exponentially from the snake head to the snake tail.

To fix the snake head to the bottom-left corner, here we minus a penalty value to the final heuristic value if
the bottom-left tile is not the largest tile in the board:

Therefore, the final heuristic value is:

Search Function

The search function accepts the board, the current search depth, and whether it is now on the player's
move.

If the search depth is 0, simply evaluates the current board and returns the heuristic value.

If currently it is on the player's move, search through all valid actions (moveLeft, moveUp, moveDown,
moveRIght), returns the best one.

If currently it is on the system's move, search through all the possible ways to spawn a new tile, then returns
the expected heuristic value according to the probability model.

512 256 4 4

1024 128 8 2

2048 64 8 2

4096 16 16 0

1

2

3

4

snake = map fromIntegral $ concat $ map (\(i, row) -> if i `mod` (2::Int) == 0 then

reverse row else row) $ zip [0..] $ transpose board

snakeSumHeu = foldl (\acc (i, x) -> acc + x/10**i) 0 $ zip [0..] snake

1

2

snakeMax = maximum snake

snakeHeadHeu = if head snake == snakeMax then 0 else (abs $ head snake - snakeMax)

** 2

1

2

snakeSumHeu - snakeHeadHeu1

Main Function

Finally, we need a main function to generate the initial board, use the agent to do search, take the move
action and then output the current game board. We end this game either when 2048 is generated or there
is no way to move the tiles.

search :: [[Int]] -> Int -> Bool -> Double

search board depth onMove

 | depth == 0 || (onMove && not (canMove board)) = heuristic board

 | onMove = maximum $ heuristic board:map (\action -> search (action board)

(depth-1) False) actions

 | otherwise = sum $ map fillOne choices

 where

 fillOne (x,y,(v, p)) = p * (search (fill board x y v) (depth-1) True) /

fromIntegral (length slots)

 choices = [(x, y, vp) | (x, y) <- slots, vp <- [(2, 0.9), (4, 0.1)]::[(Int,

Double)]]

 slots = [(x, y) | (x, row) <- zip [0..] board, (y, val) <- zip [0..] row, val

== 0]

 actions = [moveUp, moveLeft, moveRight, moveDown]

1

2

3

4

5

6

7

8

9

10

11

play :: [[Int]] -> IO ()

play board

 | elem 2048 (concat board) = printBoard board >> putStrLn "Success."

 | canPlay board = do

 printBoard board

 case elem 0 (concat nextBoard) of

 False -> putStrLn "Lost."

 _ ->

 spawn nextBoard >>= play

 | otherwise = printBoard board >> putStrLn "Lost."

 where

 nextBoard = snd $ maximumBy (compare `on` fst) $ map dbfunc actions where

 dbfunc = \action -> helper action

 helper = \action -> let next = action board in (search next <maximum search

depth> False, next)

 actions = [moveUp, moveLeft, moveRight, moveDown]

main :: IO ()

main = pure [[0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0]] >>= spawn >>= spawn >>=

play

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Maximum Search Depth Success Rate Average Running Time

1 0 0.08s

2 85.7% 0.7s

3 87.9% 4.5s

4 96.4% 29s

5 99.3% 287s

Maximum Search Depth

Now we need to pick a good maximum search death to get the best tradeoff between success rate and
running time. In order to find that, we run the program 1,000 times under different maximum search depth,
and record the corresponding running time and success rate:

(Note: only successful runs are counted into average running time)

According to the result, we picked 4 to be the maximum search depth because it gives a very good success
rate as well as an acceptable running time. The rest parts of this report will use 4 as the maximum search
depth.

Parallel Implementation

Attempt 1

Parallelize every search steps by using parMap rpar instead of map to transfer to the next level of the
search tree.

The running result of sparks:

From this result we can see that most of the sparks are garbage collected. Therefore we can conclude the
tasks are too fine-grained and we need to make it more coarse-grained.

Attempt 2

Only parallelize the top search step:

The spark result is:

We can see the sparks are generated normally. However from threadscope:

The workload is very uneven. From the activity row we can see that there is only one core working almost at
any time.

SPARKS: 37093731 (835503 converted, 0 overflowed, 0 dud, 20232203 GC'd, 16026025

fizzled)

1

SPARKS: 3816 (2861 converted, 0 overflowed, 0 dud, 949 GC'd, 6 fizzled)1

Attempt 3

Only parallelize the search steps of which onMove is false and the depth is greater than 3:

The sparks look great:

From threadscope, on average the speedup is about 3x. The workload is distributed evenly.

Other Attempts

I also tried other attempts to adjust the parallel components, including moving the board in parallel,
calculating the heuristic function in parallel, adjust the depth for allowing parallel and so on. However the
best result I got is the result from attempt 3.

Performance Evaluation
We evaluate the performance via two dimensions: success rate and running time.

To make accurate result, we run the program 1,00 times and get the average running time.

Note: only successful runs are counted into the average running time.

SPARKS: 106512 (97231 converted, 0 overflowed, 0 dud, 5226 GC'd, 4055 fizzled)1

Program Threads Average Running Time Speedup

Parallel Implementation 1 25.9s 1.01

 2 14.4s 1.82

 4 9.5s 2.76

 8 9.3s 2.82

 16 9.9s 2.65

 32 9.4s 2.79

Sequential Implementation 26.3s

Python Sequential Implementation 385s

Testing Environment

MacBook Pro Mid 2015
CPU: 2.2 GHz Quad-Core Intel Core i7
Memory: 16 GB 1600 MHz DDR3

Parallel Evaluation

Testing Parameter

parallel implementation with using 1, 2, 4, 8, 16 threads
haskell sequential implementation
python sequential implementation

Algorithm Evaluation

To evaluate whether expectimax is better than minimax with alpha-beta pruning with regard to 2048 game,
we use the minimax with alpha-beta pruning implementation from 2048-puzzle1 and 2048-puzzle2.

In order to do a fair comparison, I modified the heuristic function of the implementations above to make it
the same as the expectimax one. The results of using the same heuristic function and using the original
heuristic function are both recorded.

The commands for running them are as follow:

2048-puzzle1

./Haskell2048 +RTS -ls -N4

2048-puzzle2

stack exec pf2048-exe <depth> mixed +RTS -N4 -s

1

2

3

4

http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/2048-puzzle1.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/2048-puzzle2.pdf

Source Heuristic Function Max Depth Average Running Time Success Rate

2048-puzzle1 Same 4 4.5s 15%

 5 39.9s 39%

 Original 4 5.6s 27%

 5 40.3s 74%

2048-puzzle2 Same 5 2.5s 27%

 6 11.61s 17%

 Original 5 7.7s 25%

 6 64.3s 36%

From the result, we can see that under the same running time, the success rate of using expectimax is much
better than minimax ones. Under the same success rate, the running time of expectimax is much better
than the minimax ones. We conclude that expectimax has a better performance compared to minimax in
the game 2048.

Reference
1. http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/2048-puzzle1.pdf
2. http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/2048-puzzle2.pdf
3. https://github.com/gjdanis/2048
4. https://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-the-game-2048/2249

8940#22498940

Appendix
Sequential Implementation Code

import Data.List(zip4, maximumBy)

import System.Random(randomRIO)

import System.Console.ANSI(clearScreen)

import Data.Function(on)

transpose :: [[Int]] -> [[Int]]

transpose [r1, r2, r3, r4] = map (\(x1,x2,x3,x4) -> [x1,x2,x3,x4]) $ zip4 r1 r2 r3

r4

transpose _ = error "can not transpose a non 4x4 matrix"

moveDown :: [[Int]] -> [[Int]]

moveDown board = reverse $ moveUp $ reverse board

moveUp :: [[Int]] -> [[Int]]

1

2

3

4

5

6

7

8

9

10

11

12

13

http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/2048-puzzle1.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/2048-puzzle2.pdf
https://github.com/gjdanis/2048
https://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-the-game-2048/22498940#22498940

moveUp board = transpose $ moveLeft $ transpose board

moveRight :: [[Int]] -> [[Int]]

moveRight board = map reverse $ moveLeft $ map reverse board

moveLeft :: [[Int]] -> [[Int]]

moveLeft board = map moveRow board where

 moveRow :: [Int] -> [Int]

 moveRow row = let merged = merge [x | x <- row, x /= 0] [] in

 reverse $ replicate (4-length merged) 0 ++ merged

 merge :: [Int] -> [Int] -> [Int]

 merge [] acc = acc

 merge [x] acc = x:acc

 merge (f:s:xs) acc

 | f == s = merge xs (f*2:acc)

 | otherwise = merge (s:xs) (f:acc)

canMove :: [[Int]] -> Bool

canMove board = any checkRow board where

 checkRow :: [Int] -> Bool

 checkRow row = any (\(a, b) -> a == b || a == 0 || b == 0) $ zip row (tail row)

fill :: [[Int]] -> Int -> Int -> Int -> [[Int]]

fill board x y v = prev ++ (newRow : next) where

 (prev, row:next) = splitAt x board

 newRow = take y row ++ v : drop (y+1) row

spawn :: [[Int]] -> IO [[Int]]

spawn board = do

 let slots = [(x, y) | (x, row) <- zip [0..] board, (y, val) <- zip [0..] row,

val == 0]

 case length slots of

 0 -> pure board

 _ -> do

 val <- randomRIO (1, 10::Int) >>= pure . (\x -> if x == 1 then 4 else 2)

 (xpos, ypos) <- randomRIO (0, length slots-1) >>= pure . (slots !!)

 return $ fill board xpos ypos val

printBoard :: [[Int]] -> IO ()

printBoard board = clearScreen >> mapM_ printRow board >> putStrLn "" where

 printRow row = putStrLn $ tail $ foldr printNum "" $ map show row

 printNum num out = (replicate (5 - (length num)) ' ')++num++out

heuristic :: [[Int]] -> Double

heuristic board

 | canMove board = snakeSumHeu - snakeHeadHeu

 | otherwise = read "-Infinity" where

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 snakeHeadHeu = if head snake == snakeMax then 0 else (abs $ head snake -

snakeMax) ** 2

 snakeSumHeu = foldl (\acc (i, x) -> acc + x/10**i) 0 $ zip [0..] snake

 snakeMax = maximum snake

 snake = map fromIntegral $ concat $ map (\(i, row) -> if i `mod` (2::Int) == 0

then reverse row else row) $ zip [0..] $ transpose board

search :: [[Int]] -> Int -> Bool -> Double

search board depth onMove

 | depth == 0 || (onMove && not (canMove board)) = heuristic board

 | onMove = maximum $ heuristic board:map (\action -> search (action board)

(depth-1) False) actions

 | otherwise = sum $ map fillOne choices

 where

 fillOne (x,y,(v, p)) = p * (search (fill board x y v) (depth-1) True) /

fromIntegral (length slots)

 choices = [(x, y, vp) | (x, y) <- slots, vp <- [(2, 0.9), (4, 0.1)]::[(Int,

Double)]]

 slots = [(x, y) | (x, row) <- zip [0..] board, (y, val) <- zip [0..] row, val

== 0]

 actions = [moveUp, moveLeft, moveRight, moveDown]

canPlay :: [[Int]] -> Bool

canPlay board = (canMove board) || (canMove $ transpose board)

play :: [[Int]] -> IO ()

play board

 | elem 2048 (concat board) = printBoard board >> putStrLn "Success."

 | canPlay board = do

 printBoard board

 case elem 0 (concat nextBoard) of

 False -> putStrLn "Lost."

 _ ->

 spawn nextBoard >>= play

 | otherwise = printBoard board >> putStrLn "Lost."

 where

 nextBoard = snd $ maximumBy (compare `on` fst) $ map helper actions where

 helper = \action -> let next = action board in (search next 4 False, next)

 actions = [moveUp, moveLeft, moveRight, moveDown]

main :: IO ()

main = do

 pure [[0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0]] >>= spawn >>= spawn >>= play

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

Parallel Implementation Code

import Data.List(zip4, maximumBy)

import System.Random(randomRIO)

import System.Console.ANSI(clearScreen)

import Data.Function(on)

import Control.Parallel.Strategies

transpose :: [[Int]] -> [[Int]]

transpose [r1, r2, r3, r4] = map (\(x1,x2,x3,x4) -> [x1,x2,x3,x4]) $ zip4 r1 r2 r3

r4

transpose _ = error "can not transpose a non 4x4 matrix"

moveDown :: [[Int]] -> [[Int]]

moveDown board = reverse $ moveUp $ reverse board

moveUp :: [[Int]] -> [[Int]]

moveUp board = transpose $ moveLeft $ transpose board

moveRight :: [[Int]] -> [[Int]]

moveRight board = map reverse $ moveLeft $ map reverse board

moveLeft :: [[Int]] -> [[Int]]

moveLeft board = map moveRow board where

 moveRow :: [Int] -> [Int]

 moveRow row = let merged = merge [x | x <- row, x /= 0] [] in

 reverse $ replicate (4-length merged) 0 ++ merged

 merge :: [Int] -> [Int] -> [Int]

 merge [] acc = acc

 merge [x] acc = x:acc

 merge (f:s:xs) acc

 | f == s = merge xs (f*2:acc)

 | otherwise = merge (s:xs) (f:acc)

canMove :: [[Int]] -> Bool

canMove board = any checkRow board where

 checkRow :: [Int] -> Bool

 checkRow row = any (\(a, b) -> a == b || a == 0 || b == 0) $ zip row (tail row)

fill :: [[Int]] -> Int -> Int -> Int -> [[Int]]

fill board x y v = prev ++ (newRow : next) where

 (prev, row:next) = splitAt x board

 newRow = take y row ++ v : drop (y+1) row

spawn :: [[Int]] -> IO [[Int]]

spawn board = do

 let slots = [(x, y) | (x, row) <- zip [0..] board, (y, val) <- zip [0..] row,

val == 0]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

 case length slots of

 0 -> pure board

 _ -> do

 val <- randomRIO (1, 10::Int) >>= pure . (\x -> if x == 1 then 4 else 2)

 (xpos, ypos) <- randomRIO (0, length slots-1) >>= pure . (slots !!)

 return $ fill board xpos ypos val

printBoard :: [[Int]] -> IO ()

printBoard board = clearScreen >> mapM_ printRow board >> putStrLn "" where

 printRow row = putStrLn $ tail $ foldr printNum "" $ map show row

 printNum num out = (replicate (5 - (length num)) ' ')++num++out

heuristic :: [[Int]] -> Double

heuristic board

 | canMove board = snakeSumHeu - snakeHeadHeu

 | otherwise = read "-Infinity" where

 snakeHeadHeu = if head snake == snakeMax then 0 else (abs $ head snake -

snakeMax) ** 2

 snakeSumHeu = foldl (\acc (i, x) -> acc + x/10**i) 0 $ zip [0..] snake

 snakeMax = maximum snake

 snake = map fromIntegral $ concat $ map (\(i, row) -> if i `mod` (2::Int) == 0

then reverse row else row) $ zip [0..] $ transpose board

search :: [[Int]] -> Int -> Bool -> Double

search board depth onMove

 | depth == 0 || (onMove && not (canMove board)) = heuristic board

 | onMove = maximum $ heuristic board:map (\action -> search (action board)

(depth-1) False) actions

 | otherwise = sum $ mapF fillOne choices

 where

 mapF = if depth > 3 then parMap rpar else map

 fillOne (x,y,(v, p)) = p * (search (fill board x y v) (depth-1) True) /

fromIntegral (length slots)

 choices = [(x, y, vp) | (x, y) <- slots, vp <- [(2, 0.9), (4, 0.1)]::[(Int,

Double)]]

 slots = [(x, y) | (x, row) <- zip [0..] board, (y, val) <- zip [0..] row, val

== 0]

 actions = [moveUp, moveLeft, moveRight, moveDown]

canPlay :: [[Int]] -> Bool

canPlay board = (canMove board) || (canMove $ transpose board)

play :: [[Int]] -> IO ()

play board

 | elem 2048 (concat board) = printBoard board >> putStrLn "Success."

 | canPlay board = do

 printBoard board

 case elem 0 (concat nextBoard) of

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

 False -> putStrLn "Lost."

 _ ->

 spawn nextBoard >>= play

 | otherwise = printBoard board >> putStrLn "Lost."

 where

 nextBoard = snd $ maximumBy (compare `on` fst) $ map helper actions where

 helper = \action -> let next = action board in (search next 4 False, next)

 actions = [moveUp, moveLeft, moveRight, moveDown]

main :: IO ()

main = do

 pure [[0,0,0,0], [0,0,0,0], [0,0,0,0], [0,0,0,0]] >>= spawn >>= spawn >>= play

89

90

91

92

93

94

95

96

97

98

99

100

	Introduction
	2048
	Expectimax

	Implementation
	Sequential Implementation
	Game Implementation
	Moving and Merging the Tiles
	Spawning a New Tile

	Agent Implementation
	Heuristic Function
	Search Function

	Main Function
	Maximum Search Depth

	Parallel Implementation
	Attempt 1
	Attempt 2
	Attempt 3
	Other Attempts

	Performance Evaluation
	Testing Environment
	Parallel Evaluation
	Testing Parameter

	Algorithm Evaluation
	Reference

	Appendix
	Sequential Implementation Code
	Parallel Implementation Code

