
Exact Cover

Fangxin Lin (fl2571)
Xinxin Zhao (xz3061)

December 2021

1

Contents

1 Introduction 3

2 Exact Cover 3

2.1 Definition . 3

2.2 Application - Sudoku . 3

2.3 Application - N-Queens . 3

3 Dancing Links and Algorithm X 4

3.1 Algorithm X . 4

3.2 Dancing Links . 4

4 Implementation and Performance 5

4.1 Persistent Adaption of Dancing Links . 5

4.2 Sequential Solver . 5

4.3 Performance - Sequential Solver . 6

4.4 Parallel Solver for N-Queens . 6

4.5 Performance - Parallel Solver . 6

A Code Listing 7

2

1 Introduction

Exact Cover is an NP-complete problem and has many applications. To solve it efficiently, Knuth proposed
AlgorithmX in 2000, a DFS-based algorithmwith a data structure namedDancing Links. Wewill implement
a parallel solver for Exact Cover in Haskell based on Dancing Links and Algorithm X.

Since Sudoku and N-Queens can reduce to Exact Cover problem directly, we will implement and test on
solvers for Sudoku and N-Queens problems.

2 Exact Cover

2.1 Definition

Given a matrix of 0s and 1s, find a set of rows containing exactly one 1 in each column. In the following
example, all columns are satisfied if we choose rows 1, 4, and 5.

0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1

2.2 Application - Sudoku

To reduce a Sudoku puzzle to an Exact Cover problem, we need:

• Rows (< 93 in total): For every cell, try every possible number. Every row corresponds to a three-
elements tuple of the cell’s coordinates and the digit inside it.

• Columns (4× 9× 9 = 324 in total):

◦ Position limit: Each cell can only contain one number.
◦ Row limit: For each row, every number appears exactly once.
◦ Column limit: For each row, every number appears exactly once.
◦ Area limit: For each area (3× 3), every number appears exactly once.

2.3 Application - N-Queens

To reduce the N-Queens problem to an Exact Cover problem, we need:

3

• Rows (n2 in total): Every row corresponds to placing a queen to a position on the board.

• Columns (n+ n+ 2(2n− 2) = 6n− 4 in total):

◦ Row limit: Each row can only place a queen.
◦ Column limit: Each column can only place a queen.
◦ Diagonal limit (don’t need to satisfy all): Each diagonal can only place a queen.

3 Dancing Links and Algorithm X

3.1 Algorithm X

1. Find a column with a minimum number of 1s, attempt to remove each row R (e.g. 4th row in the left
matrix) with 1 in that column.

2. Remove all columns with 1 in row R (1st and 4th columns in the left matrix).

3. Remove all rows with 1 in removed columns (2nd, 4th and 6th rows in the left matrix).

4. Solve the sub-problems until the matrix becomes empty.

0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1

 ⇒

0 1 1 1 0
1 1 0 1 0
1 0 0 0 1

3.2 Dancing Links

In short, dancing links is a doubly orthogonal circular linked list. The advantage of this data structure is that
it can remove and restore a row or column efficiently, and look up columns from a row or vice versa. Fig.
1 is a picture of a dancing links.

Figure 1: an illustration of a dancing link structure

4

4 Implementation and Performance

4.1 Persistent Adaption of Dancing Links

Though we can implement dancing links in the same way using Data.Array or Data.Vectorwith the same
time complexity, but mutable data structure is not suitable for parallel programming. Thus we use Data.Set
and Data.Map to build an immutable data structure to provide the same functionalities as dancing links, but
at the cost of O(logn) overhead.

We define the following data structure, where val::a in DLXRow is meta-information relating to the actual
problem.

type DLX a = M.Map Int (DLXColumn a)
type DLXColumn a = S.Set (DLXRow a)
data DLXRow a = DLXRow {

columns :: S.Set Int,
val :: a

} deriving (Show)

removeRow :: Ord a => DLX a -> DLXRow a -> DLX a
removeRow dlx row = foldl (flip $ M.adjust (S.delete row)) dlx (columns row)

removeColumn :: Ord a => DLX a -> Int -> DLX a
removeColumn dlx idx = M.delete idx $

S.foldl removeRow dlx (M.findWithDefault S.empty idx dlx)

4.2 Sequential Solver

We implement two solvers: one is to find a valid solution while another is to find all solutions. Function
candidates will select a column heuristically to satisfy next, and the solver will attempt to select each row
in that columns and solve the sub-problems recursively.

candidates :: Ord a => DLX a -> [DLXRow a]
candidates dlx = S.toList $ minimumBy (comparing S.size) $ M.elems dlx

solve :: Ord a => DLX a -> Maybe [a]
solve dlx | M.null dlx = Just []
solve dlx = msum . map (\row -> fmap (val row :)

(solve (selectRow dlx row))) $ candidates dlx

solveAll :: Ord a => DLX a -> [[a]]
solveAll dlx | M.null dlx = [[]]
solveAll dlx = candidates dlx >>=

(\row -> map (val row :) (solveAll (selectRow dlx row)))

5

4.3 Performance - Sequential Solver

We test our Sudoku solver against 1,000 most difficult (17-clue) Sudoku problems, comparing with a very
fast solver in Haskell Wiki and a solver from a past student of this class. As shown in table 1, our solver is
comparable with the very fast solver, while our algorithm can generalize to other exact cover problems.

Table 1: Benchmark on 1,000 17-clue Sudoku problems1

Our Peter’s Solver2 Very Fast Solver3
Time (sec) 5.79 3,320.004 1.02

Because the runtime of our Sudoku solver is too fast to parallelize, so we will only parallelize with our
N-Queens solver.

4.4 Parallel Solver for N-Queens

Our N-Queens solver aims to count the number of solutions for a given N. Since our solver is based on DFS,
we can simply use parMap to parallelize the process of solving sub-problems. And to prevent producing too
many sparks, we also add a parameter level to control the maximum depth of parallelism.

solveRCCount :: Ord a => Int -> DLX a -> Int
solveRCCount c dlx | M.null dlx || fst (M.findMin dlx) > c = 1
solveRCCount c dlx = sum $ map (solveRCCount c . selectRow dlx) $ candidatesRC c dlx

solveRCCountPar :: Ord a => Int -> Int -> DLX a -> Int
solveRCCountPar _ c dlx | M.null dlx || fst (M.findMin dlx) > c = 1
solveRCCountPar level c dlx =

let solver = if level == 0 then solveRCCount else solveRCCountPar (level - 1) in
sum $ parMap rseq (solver c . selectRow dlx) (candidatesRC c dlx)

4.5 Performance - Parallel Solver

We test our parallel solver with different numbers of threads. According to fig. 2, the performance of par-
allelism is pretty close to the ideal situation regardless of the depth of parallelism. Thanks to Haskell and
Control.Parallel.Strategies, we can conclude our parallelization is good enough by invoking the
parMap without touching the underlying mechanism.

From fig. 3, the balance of parallelism is slightly better if increasing the depth of parallelism, but the runtime
and overall performance does not improve notably.

1dataset: link, 5-run average, 4C8T 1.3GHz i7-1065G7
2http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/sodoku.pdf
3https://wiki.haskell.org/Sudoku#Very_fast_Solver
4In approximation.

6

https://raw.githubusercontent.com/maxbergmark/sudoku-solver/master/data-sets/all_17_clue_sudokus.txt
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/sodoku.pdf
https://wiki.haskell.org/Sudoku#Very_fast_Solver

Idealdepth=1

unlimited

0 2 4 6 8 10
Threads0

5

10

15

20

25

30

Time(s)

Figure 2: N-Queens(N=14),3.60GHz 8C16T i9-9900KF,5-run average

(a) limit parallel depth to 1 (b) unlimited parallel depth

Figure 3: ThreadScope

A Code Listing

You can visit https://github.com/zerolfx/exact-cover to see the updated code of this project.

7

https://github.com/zerolfx/exact-cover

ExactCover.hs

module ExactCover where

import qualified Data.Map as M
import qualified Data.Set as S
import Data.List (minimumBy)
import Control.Monad (msum)
import Data.Ord (comparing)
import Data.Function (on)

type DLX a = M.Map Int (DLXColumn a)
type DLXColumn a = S.Set (DLXRow a)
data DLXRow a = DLXRow {

columns :: S.Set Int,
val :: a

} deriving (Show)

instance Ord a => Ord (DLXRow a) where
compare = comparing val

instance Eq a => Eq (DLXRow a) where
(==) = (==) `on` val

removeRow :: Ord a => DLX a -> DLXRow a -> DLX a
removeRow dlx row = foldl (flip $ M.adjust (S.delete row)) dlx (columns row)

removeColumn :: Ord a => DLX a -> Int -> DLX a
removeColumn dlx idx = M.delete idx $ S.foldl removeRow dlx (M.findWithDefault S.empty idx dlx)

selectRow :: Ord a => DLX a -> DLXRow a -> DLX a
selectRow dlx row = foldl removeColumn dlx (columns row)

candidates :: Ord a => DLX a -> [DLXRow a]
candidates dlx = S.toList $ minimumBy (comparing S.size) $ M.elems dlx

solve :: Ord a => DLX a -> Maybe [a]
solve dlx | M.null dlx = Just []
solve dlx = msum . map (\row -> fmap (val row :) (solve (selectRow dlx row))) $ candidates dlx

solveAll :: Ord a => DLX a -> [[a]]
solveAll dlx | M.null dlx = [[]]
solveAll dlx = candidates dlx >>= (\row -> map (val row :) (solveAll (selectRow dlx row)))

buildFromRow :: Ord a => DLXRow a -> DLX a
buildFromRow row = M.fromList [(i, S.singleton row) | i <- S.toList (columns row)]

8

buildFromRows :: Ord a => [DLXRow a] -> DLX a
buildFromRows = foldl (\m row -> M.unionWith S.union m (buildFromRow row)) M.empty

Sudoku.hs

module Sudoku (sudoku, sudokuAll, sudokuAllPar) where

import ExactCover
import qualified Data.Set as S
import qualified Data.Map as M
import Data.Char (ord, chr)
import Control.Parallel.Strategies (using, parList, rseq)

choices :: String -> [(Int, Int, Int)]
choices s =

[(x, y, ord c - ord '1') | (i, c) <- zip [0..] s, c /= '.', let (x, y) = (i `div` 9, i `mod` 9)] ++
[(x, y, v) | (i, c) <- zip [0..] s, c == '.', let (x, y) = (i `div` 9, i `mod` 9), v <- [0..8]]

areaPos :: (Int, Int) -> Int
areaPos (x, y) = 3 * (x `div` 3) + (y `div` 3)

genRow :: (Int, Int, Int) -> DLXRow (Int, Int, Int)
genRow (x, y, v) = DLXRow (S.fromList [x * 9 + v, 1000 + y * 9 + v, 2000 + x * 9 + y, 3000 + areaPos (x, y) * 9 + v]) (x, y, v)

genSolution :: [(Int, Int, Int)] -> String
genSolution pos = let m = M.fromList [((x, y), v) | (x, y, v) <- pos] in

map (\i -> chr (ord '1' + m M.! (i `div` 9, i `mod` 9))) [0..81 - 1]

sudoku :: String -> Maybe String
sudoku s = genSolution <$> solve (buildFromRows (map genRow (choices s)))

sudokuAll :: String -> [String]
sudokuAll s = genSolution <$> solveAll (buildFromRows (map genRow (choices s)))

solveAllPar :: Ord a => DLX a -> [[a]]
solveAllPar dlx | M.null dlx = [[]]
solveAllPar dlx = candidates dlx >>= (\row -> map (val row :) (solveAllPar (selectRow dlx row)) `using` parList rseq)

sudokuAllPar :: String -> [String]
sudokuAllPar s = genSolution <$> solveAllPar (buildFromRows (map genRow (choices s)))

NQueens.hs

9

module NQueens (nqueens, nqueensPar) where
import ExactCover
import qualified Data.Set as S
import qualified Data.Map as M
import Data.List (minimumBy)
import Data.Ord (comparing)
import Control.Parallel.Strategies (parMap, rseq)

candidatesRC :: Ord a => Int -> DLX a -> [DLXRow a]
candidatesRC c dlx = S.toList $ minimumBy (comparing S.size) $ map snd $ filter ((<= c) . fst) $ M.toList dlx

solveRCCount :: Ord a => Int -> DLX a -> Int
solveRCCount c dlx | M.null dlx || fst (M.findMin dlx) > c = 1
solveRCCount c dlx = sum $ map (solveRCCount c . selectRow dlx) $ candidatesRC c dlx

solveRCCountPar :: Ord a => Int -> Int -> DLX a -> Int
solveRCCountPar _ c dlx | M.null dlx || fst (M.findMin dlx) > c = 1
solveRCCountPar level c dlx =

let solver = if level == 0 then solveRCCount else solveRCCountPar (level - 1) in
sum $ parMap rseq (solver c . selectRow dlx) (candidatesRC c dlx)

nqueens :: Int -> Int
nqueens n = solveRCCount 1500 $ buildFromRows $ [

DLXRow (S.fromList [x, 1000 + y, 2000 + x + y, 3000 + x - y]) (x, y)
| x <- [0 .. n - 1], y <- [0 .. n - 1]]

nqueensPar :: Int -> Int -> Int
nqueensPar level n = solveRCCountPar level 1500 $ buildFromRows $ [

DLXRow (S.fromList [x, 1000 + y, 2000 + x + y, 3000 + x - y]) (x, y)
| x <- [0 .. n - 1], y <- [0 .. n - 1]]

Main.hs

module Main where

import Sudoku
import NQueens

main :: IO ()
main = do

let s = "4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......"
print $ sudoku s
print $ sudokuAll s
print $ sudokuAllPar s
print $ nqueens 13
print $ nqueensPar 10000000 14

10

	Introduction
	Exact Cover
	Definition
	Application - Sudoku
	Application - N-Queens

	Dancing Links and Algorithm X
	Algorithm X
	Dancing Links

	Implementation and Performance
	Persistent Adaption of Dancing Links
	Sequential Solver
	Performance - Sequential Solver
	Parallel Solver for N-Queens
	Performance - Parallel Solver

	Code Listing

