
COMS 4995:
Parallel Functional Programming

2021 Fall

Dots and Boxes
Parallelized Minimax

Sitong Feng (sf3049)
Yuyan Ke (yk2822)

Introduction
Dots and Boxes is a classic two-player adversarial game on a 2 x 2 square grid with empty
boxes. (Note the size of the grid could change to increase difficulty.) Each player takes turns in
drawing one side of a free box. The player that draws the last free side of the box owns that box,
and if the last side is shared between two boxes, then that player takes both boxes, and his/her
score will be incremented by 2. At the end of the game, the player with the most boxes/scores
wins.

Problem Formulation
Our project aims to solve the game using the minimax algorithm, modeled as a tree that includes every
possible state of the board. The game starts with AI making the move. For all possible edges available for
AI to choose, it checks all possible moves that the human player can subsequently choose, and assume the
human will choose one that minimizes the AI’s chance’s winning. Then minimax chooses AI’s move
based on the highest possible heuristic score.

Since the tree will be fully traversed to evaluate all possible moves, in a depth-first approach, it will
generate a substantial search space which is very time-consuming on a large game board. Thus, we
implemented a depth-limited sequential minimax algorithm to run on our 2x2 board. However, for a more
optimal solution to the game, we decide to apply a parallel version of minimax to speed up the game. For
our experiment, we will vary the number of cores, and depth of the parallel levels of the game trees, to
achieve the most efficient and fastest performance of the game.

Implementation

Data Type Definition
For the representation of the game board, we created two additional data types of Edge and Box.

All edges in a game board are represented by the Edge data type, each with a unique integer identifier,
eid, and a bool flag indicating if the edge has been taken for a given box.

data Edge = Edge {eid :: Int, flag :: Bool}

Similarly, all boxes in a given game configuration are each represented by the Box data type. Each box
contains an unsorted list of 4 edges and a value representing the score earned for closing the given box.

data Box = Box
{ edges :: [Edge],

val :: Int
}
deriving (Eq)

Since the game logic relies on an up-to-date, non-duplicate representation of all available moves
remaining at a given point in time, the program maintains and moves around a set of available edges and a
list of current boxes. In order to avoid duplication and define the equivalence of two Edge types derived
from different bool flags for the same edge identification, we implemented instances of Ord and Eq for
the Edge type. Additionally, in order to better display and print the data types, an instance of Show is
written for Edge and Box data types.

instance Ord Edge where
(Edge v1 _) `compare` (Edge v2 _) = v1 `compare` v2

instance Show Edge where
show (Edge x f)="(Edge " ++ (show x) ++ " " ++ (show f) ++

")"

instance Eq Edge where
(Edge v1 _) == (Edge v2 _) = v1 == v2

instance Show Box where
show (Box l v) = "Box " ++ (printEdgeList l) ++ " " ++ (show

v)

printEdgeList :: [Edge] -> String

printEdgeList [] = []
printEdgeList (x : xs) = show x ++ " " ++ printEdgeList xs

Game Logic
Execution commands from the terminal:

1. stack build
2. stack exec <executable-filename> – <configuration-file>

<execution-mode>

From the command line, two arguments are required for program execution – game configuration file and
program execution mode. A set of 5 pre-configured game boards are provided in the game-config/
directory for execution; each row of the board configuration describes properties of a box with the first
value representing the value, and the rest 4 integers identifying each edge of the box starting with the
topmost edge counting clockwise. The 4 options of program modes are:

● ‘algo-seq’ for timing the sequential minimax algorithm on the entire game tree,
● ‘algo-par’ for timing the parallelized minimax algorithm for the entire game tree,
● ‘game-seq’ for game-playing with AI utilizing sequential minimax algorithm,
● ‘game-par’ for game-playing with AI utilizing parallel minimax algorithm.

The program loads the game board from the configuration file into a set of available edges and a list of
boxes and passes this representation to the corresponding function for the given program mode.

For timing mode, the program will run the algorithm, output an optimal first move for the AI, and
terminate. For both game-playing modes, the program will prompt the user to input: sequential tree depth
- to limit the depth of minimax tree traversal and parallel tree depth to define the height of the top parallel
tree.

Functions gameStartSeq and gameStartPar will call gameLoopSeq and gameLoopPar to
start the game-playing interaction for each game-playing mode respectively. The two variations of the
gameLoop are recursive calls to themselves with an alternation of a boolean flag to denote whether it’s
the AI (represented as False) or the human’s (represented as True) turn. If it’s the human’s turn, the
program will display the current board configuration by printing the states of all boxes and available
edges to the console and prompt the user to select the next move based on edge identification. If it’s AI’s
turn, the current edge set, box list, game score, and depth are passed into the corresponding minimax
algorithm that would return the best move.

Once the next move is determined for either player, nextGameState will be called to update the game
configuration and the score for the next iteration of the game loop.

The program follows the idea of zero-sum to track the scores and progress of both players with a single
integer. The game starts with a neutral score of 0. Human scores are deducted from the score while the AI
scores will be added to the score. The final game loop ends when there aren’t any edges left and the result

of the game will be reported. Human wins if the score is negative, AI wins if positive, or a draw if the
score is 0.

Sequential Solution

Minimax with depth limited approach
The base minimax starts with maximizing heuristics then alternates with minimizing the heuristics to
traverse through the whole tree and return the best possible move for the computer-based on the
opponent’s actions.

The depth limited approach is added to improve the performance of minimax running on a large game
board. Since most of the game states generated in the end are repetitive and take a huge amount of time,
we have limited the levels (the default depth is 9 for optimal result with a speedy run) to return the
optimal results evaluated so far for the tradeoff between time and optimal move.

rootnode -> on each first possible move, calls minimax to generate opponent’s subsequent moves
terminal or depth = 0 -> end the minimax when there is no game action or depth reaches 0
not player -> computer’s turn, which calls minimax on human’s actions
player -> human’s turn , which calls minimax on computer’s actions

minimaxDepLim :: (Eq t, Num t) => Bool -> t -> (Set.Set Edge, [Box], Int) -> Edge -> (Int,

Edge)

minimaxDepLim player depth (edgeset, boxlist, aiScore) edge

| rootnode = bestMove [minimaxDepLim True newDepth x e | (x, e) <- initExpandedStates]

| terminal || depth == 0 = (aiScore, edge)

| not player = bestMove [minimaxDepLim True newDepth x e | (x, e) <- subExpandedStates]

| player = worstMove [minimaxDepLim False newDepth x e | (x, e) <- subExpandedStates]

| otherwise = error "invalid game state"

where

newDepth = depth - 1

initExpandedStates = [(getNextGameState e, e) | e <- edgelist]

subExpandedStates = [(getNextGameState e, edge) | e <- edgelist]

getNextGameState someEdge = nextGameState someEdge (edgeset, boxlist) aiScore player

edgelist = Set.toList edgeset

terminal = Set.null edgeset

rootnode = edge == Edge 0 False

Parallel Solution

For the parallel optimization of minimax function, we analyzed the structure of the minimax function,
which as mentioned, finds best action from all available move by calling itself recursively on each action
to the near bottom of the search tree. This fits the pattern of the parallel strategy – map <function>
<input-list>`using` parList rseq, with minimax being the function, taking in the
input-list, which is the combination of the current game state with every remaining move (aka.
edge) in the game. For this reason, we parallelize the execution of the minimax function for each possible
input combination, and the collective results (aka. parResult…) get passed into
bestMove/worstMove as the parameter. Additionally, rseq is chosen over rpar because the
results from each minimax call need to be evaluated for the bestMove function so a best possible move
could be determined by comparing scores that maximizes the game outcome.

The parallel solution also has a limited depth that dermines the height of the parallel tree. The top levels
of the tree will run in parallel because more works are required of each nodes on the top levels near the
root, and the work per sub-branch decreases as the tree grows closer to the leaf nodes. When reaching
depth = 0, the minimax will evaluate rest of the tree with sequential approach to avoid overhead of
creating too many sparks that do not accomplish much work, in which case it might not worth the
overhead of generating the sparks.

minimaxParDep :: (Eq a, Eq t, Num t, Num a) => (Bool, a, t, (Set.Set Edge, [Box],

Int), Edge) -> (Int, Edge)

minimaxParDep (player, parDepth, seqDep, (edgeset, boxlist, aiScore), edge)

| parDepth == 0 = minimaxDepLim player seqDep (edgeset, boxlist, aiScore) edge

| rootnode = bestMove parResultInitMax

| terminal = (aiScore, edge)

| not player = bestMove parResultSubMax

| player = worstMove parResultSubMin

| otherwise = error "invalid game state"

where

parResultInitMax = map minimaxParDep paramListInitMax `using` parList rseq

parResultSubMax = map minimaxParDep paramListSubMax `using` parList rseq

parResultSubMin = map minimaxParDep paramListSubMax `using` parList rseq

newParDepth = parDepth - 1

newSeqDepth = seqDep - 1

paramListInitMax = [(True, newParDepth, newSeqDepth, x, e) | (x, e) <-

initExpandedStates]

paramListSubMax = [(True, newParDepth, newSeqDepth, x, e) | (x, e) <-

subExpandedStates]

paramListSubMin = [(False, newParDepth, newSeqDepth, x, e) | (x, e) <-

subExpandedStates]

initExpandedStates = [(getNextGameState e, e) | e <- edgelist]

subExpandedStates = [(getNextGameState e, edge) | e <- edgelist]

getNextGameState someEdge = nextGameState someEdge (edgeset, boxlist) aiScore

player

edgelist = Set.toList edgeset

terminal = Set.null edgeset

rootnode = edge == Edge 0 False

Best Move and Worst Move
The bestMove fuction takes in a list of resulting tuples (score, edge) from the minimax and
returns the tuple with the best score, while worstMove returns the tuple with the worst score.

bestMove :: [(Int, Edge)] -> (Int, Edge)

bestMove [(score, edge)] = (score, edge)

bestMove ((score, edge) : (score', edge') : xs) = bestMove (if score >= score' then

(score, edge) : xs else (score', edge') : xs)

bestMove _ = error "BestMove: not a valid move"

worstMove :: [(Int, Edge)] -> (Int, Edge)

worstMove [(score, edge)] = (score, edge)

worstMove ((score, edge) : (score', edge') : xs) = worstMove (if score <= score' then

(score, edge) : xs else (score', edge') : xs)

worstMove _ = error "WorstMove: not a valid move"

Results / Evaluation

Evaluation Strategy
To derive a holistic analysis for the parallel and sequential version of minimax algorithm, we
experimented with sequential version with depth limited approach, and parallel version with paralle depth
limited approach.

Some parameters we varied include:
1. the number of cores to run on parallel version
2. the depth of the parallel tree (from 1 to 5). With the whole tree height remains the same, the

higher the parallel top tree part, the lower in height for the remaining sequential minimax run.
3. For every combination, we run 3 times and takes the appropriate result to minimize the variance.

Moreoever, in order to analyze the effects of the parallel program and minimizing the effects of system
performances, we conducted our analysis using a 2*2 game board. This configuration of the board has a
reasonable sequential run-time (approximately 30 sec) and with parallelism applied, we expected the
effects to be substantial, such that we could confidently conclude that the speed up is indeed from
parallelism.

Analysis
In order to ensure that the sequential algorithm is truly running on 1 core, we applied the +RTS -N1 flag
to the sequential execution. For parallel analysis, we experiemented with parallel depths ranging from 1 to
5 and number of cores from 2 to 10 in most cases. The numerical results associated with each run are
recorded in a table form below and the optimal execution time for a given parallel depth is bolded and
displayed in red.

For sequential algorithm limited to 1 core, the execution time was 33.972 sec. With parallism, the average
execution time is approximately 8 sec with the optimal number of cores, nearly 4.25x speed up.

Experimentally, the most optimal execution time with parallel depth of 4 running on 8 cores was 7.553
sec with 4.5x speed up, but the second best execution time was 7.579 sec from parallel depth of 2 running
on 8 cores. The subtle differences could be due to system performance at a given moment in time, but
together, both runs suggest a range for an optimal execution, which is about 8 cores, running between
parallel depth of 2 to 4.

For the two optimal runs above, there is only 5% or less conversion rate of total sparks. This indicates that
there is some optimization we can do in tuning parallel algorithm to bring down the overhead from spark
generation, reducing the number of fizzled sparks to futher improve the run time.

Raw Results

Sparks

Parallel
Depth Cores

Time
(s)

Conversion
Rate Total Converted Overflowed Dud GC'd Fizzled

Memory
(MiB)

Sequential 33.972 0 0 0 0 0 0 0 3

1

2 21.056 0.917 12 11 0 0 0 1 4

4 9.914 0.917 12 11 0 0 0 1 6

6 8.465 0.917 12 11 0 0 0 1 8

7 8.669 0.917 12 11 0 0 0 1 9

8 8.637 0.917 12 11 0 0 0 1 10

9 11.017 0.917 12 11 0 0 0 1 11

10 11.363 1 12 12 0 0 0 0 13

2

2 17.973 0.076 144 11 0 0 0 133 4

3 13.046 0.347 144 50 0 0 0 94 5

4 9.239 0.604 144 87 0 0 0 57 6

5 10.172 0.201 144 29 0 0 0 115 7

6 8.641 0.542 144 78 0 0 0 66 8

7 8.18 0.306 144 44 0 0 0 100 9

8 7.579 0.438 144 63 0 0 0 81 10

9 8.443 0.257 144 37 0 0 0 107 11

10 9.232 0.181 144 26 0 0 0 118 13

3

2 18.023 0.014 1464 20 0 0 0 1444 4

4 9.792 0.139 1464 204 0 0 0 1260 6

6 8.562 0.023 1464 33 0 0 0 1431 8

7 8.658 0.15 1464 219 0 0 0 1245 9

8 8.256 0.408 1474 601 0 0 8 865 10

10 8.543 0.083 1464 122 0 0 0 1342 13

12 9.385 0.223 1464 327 0 0 0 1137 15

4

2 20.693 0.002 13353 29 0 0 9 13315 4

4 9.79 0.002 13344 31 0 0 0 13313 6

6 8.754 0.035 13372 471 0 0 17 12884 8

7 10.331 0.076 13363 1013 0 0 19 12331 9

8 7.553 0.033 13344 444 0 0 0 12900 10

9 8.38 0.01 13344 132 0 0 0 13212 11

10 8.789 0.034 13363 451 0 0 19 12893 13

5

2 18.445 0 108384 28 0 0 36 108320 4

4 10.323 0.004 108384 413 0 0 9 107962 6

6 8.87 0.005 108384 505 0 0 12 107867 8

7 8.5165 0.005 108384 505 0 0 12 107867 9

8 8.163 0.012 108441 1274 0 0 68 107099 10

9 9.477 0.016 108433 1784 0 0 58 106591 12

10 10.179 0.005 108408 581 0 0 34 107793 13

Result Graph

The graph shows that the most optimal results happened around 6 cores and 8 cores. This partly attributes
the hardware limitations of our computer which has 8 cores. However, the least run time happened with
parallel depth of 4 on 8 cores, which is close to the depth = 5 above. Beyond 8 cores, most graphs appear
to rise in execution time again, suggesting that parallel overheads are starting to reduce the parallel
performance. Furthermore, from the threadscope captures below, it’s appearant that for certain parallel
depths, more cores cause load imbalance which explains the increase in runtime.

Threadscope

Sequential

Parallel Depth = 1

-N2

-N4

-N6

-N7

-N8

-N9

-N10

Parallel Depth = 2

-N2

-N3

-N4

-N5

-N6

-N7

-N8

-N9

-N10

Parallel Depth = 3

-N2

-N4

-N6

-N7

-N8

-N10

-N12

Parallel Depth = 4

-N2

-N4

-N6

-N7

-N8

-N9

-N10

Parallel Depth = 5

-N2

-N4

-N6

-N8

-N9

-N10

Future Work
Based on the current progress and experimental results of the project, the following could be considered
for future work:

● Implement alpha-beta pruning
● Utilize a cache table in the minimax algorithm to avoid duplicated sub-branch calculation
● Fine-tuning spark parameters to reduce overheads from high fizzle rate
● Improve game board display on the console

Code Listing

Main.hs

- Main function that gets the user input command and starts the game

module Main where

import Lib

import System.Environment (getArgs, getProgName)

import System.Exit (die)

main :: IO ()

main = do

args <- getArgs

case args of

[config_file, mode] -> do gameFunc config_file mode

_ -> do

prog <- getProgName

putStrLn $ "Usage: " ++ prog ++ " <configuration_file> <program-mode>"

putStrLn "'algo-seq': running sequential minimax algorithm ONLY"

putStrLn "'algo-par': running parallel minimax algorithm ONLY"

putStrLn "'game-seq': game-mode using sequential minimax algorithm"

putStrLn "'game-par': game-mode using parallel minimax algorithm"

die ""

Lib.hs
- contains all game modeling and different minimax functions

module Lib

(gameFunc,

)

where

import Control.Parallel.Strategies (parList, rseq, using)

import qualified Data.Map.Strict as Map

import qualified Data.Set as Set

import Debug.Trace ()

import Foreign.C.String (castCharToCSChar)

import System.Exit (die)

import System.IO (Handle, IOMode (ReadMode), hGetLine, hIsEOF, withFile)

gameFunc :: String -> String -> IO ()

gameFunc config_file mode = do

(eSet, bList) <- readConfig config_file

case mode of

"algo-seq" -> do

putStrLn "Running SEQUENTIAL minimax algorithm with tree depth = 9"

let (score, edge) = minimaxDepLim False 9 (eSet, bList, 0) (Edge 0 False)

putStrLn $ "algorithm suggested: " ++ show edge

return ()

"algo-par" -> do

let pDepth = 1

putStrLn $ "Running PARALLEL minimax algorithm with tree depth = 9 and parallel

depth = " ++ show pDepth

let (score, edge) = minimaxParDep (False, pDepth, 9, (eSet, bList, 0), Edge 0

False)

putStrLn $ "algorithm suggested: " ++ show edge

return ()

"game-seq" -> do

putStrLn "Playing game with SEQUENTIAL minimax algorithm"

depth <- getAlgoDepth

putStrLn "Game Board: "

mapM_ print bList

putStrLn "Available edges :"

putStrLn $ "" ++ printEdgeList (Set.toList eSet)

putStrLn "SEQUENTIAL Game is starting..."

gameStartSeq eSet bList depth

"game-par" -> do

putStrLn "Playing game with PARALLEL minimax algorithm"

putStrLn "Game Board: "

mapM_ print bList

putStrLn "Available edges :"

putStrLn $ "" ++ printEdgeList (Set.toList eSet)

depth <- getAlgoDepth

pDepth <- getParDepth

putStrLn (printEdgeList (Set.toList eSet))

putStrLn "PARALLEL Game is starting..."

gameStartPar eSet bList depth pDepth

_ -> die "Invalid game mode: options are 'algo-seq', 'algo-par', 'game-seq',

'game-par'"

-- Int = unique identification per edge

-- Bool = whether the edge is taken

data Edge = Edge {eid :: Int, flag :: Bool}

data Box = Box

{ edges :: [Edge],

val :: Int

}

deriving (Eq)

instance Ord Edge where

(Edge v1 _) `compare` (Edge v2 _) = v1 `compare` v2

instance Show Edge where

show (Edge x f) = "(Edge " ++ show x ++ " " ++ show f ++ ")"

instance Eq Edge where

(Edge v1 _) == (Edge v2 _) = v1 == v2

instance Show Box where

show (Box l v) = "Box " ++ printEdgeList l ++ " " ++ show v

printEdgeList :: [Edge] -> String

printEdgeList [] = []

printEdgeList (x : xs) = show x ++ " " ++ printEdgeList xs

readConfig :: String -> IO (Set.Set Edge, [Box])

readConfig fname = withFile fname ReadMode initiateGameBoard

initiateGameBoard :: Handle -> IO (Set.Set Edge, [Box])

initiateGameBoard h = do

res <- hIsEOF h

if res

then return (Set.empty, [])

else do

(b, eList) <- initBox h

(eSet, bList) <- initiateGameBoard h

let newESet = foldl (flip Set.insert) eSet eList

return (newESet, b : bList)

initBox :: Handle -> IO (Box, [Edge])

initBox h = do

line <- hGetLine h

case words line of

l@[v, e1, e2, e3, e4] -> do

let edgeL = foldl (\acc x -> Edge (read x) False : acc) [] (tail l)

let box = Box edgeL (read v)

return (box, edgeL)

_ -> die "Board Configuration Read Error."

getAlgoDepth :: IO Int

getAlgoDepth = do

putStrLn "Enter a depth for the AI search tree: "

putStrLn "(if running on 2x2 board, enter depth < 9 for speed up): "

read <$> getLine

getParDepth :: IO Int

getParDepth = do

putStrLn "Enter a depth for parallelism: "

read <$> getLine

-- note: computer makes the first move

gameStartSeq :: Set.Set Edge -> [Box] -> Int -> IO ()

gameStartSeq edgeSet boxList depth =

if Set.null edgeSet || null boxList

then die "Error: starting the game because edge set or box list is empty."

else do

-- putStrLn "inside game starts, before game loop"

res <- gameLoopSeq edgeSet boxList False 0 depth

case res `compare` 0 of

LT -> putStrLn "Human WIN!"

EQ -> putStrLn "DRAW!"

GT -> putStrLn "Computer WIN!"

-- note: computer makes the first move

gameStartPar :: Set.Set Edge -> [Box] -> Int -> Int -> IO ()

gameStartPar edgeSet boxList depth pDepth =

if Set.null edgeSet || null boxList

then die "Error: starting the game because edge set or box list is empty."

else do

-- putStrLn "inside game starts, before game loop"

res <- gameLoopPar edgeSet boxList False 0 depth pDepth

case res `compare` 0 of

LT -> putStrLn "Human WIN!"

EQ -> putStrLn "DRAW!"

GT -> putStrLn "Computer WIN!"

{-

gameLoop: send game control between player and computer

param 1: set of remaining edges

param 2: list of remaining boxes

param 3: flag denoting turn (computer = False, human = True)

param 4: integer cumulative score of computer

param 5: integer cumulative score of human

Return: -1 = COMPUTER win

0 = Tie

1 = HUMAN win

-}

gameLoopSeq :: Set.Set Edge -> [Box] -> Bool -> Int -> Int -> IO Int

gameLoopSeq eSet bList t aiScore depth

| Set.null eSet = return aiScore

| t = do

putStrLn "HUMAN move:"

putStrLn "Available box list: "

mapM_ print bList

eId <- getHumanMove eSet

let nextEdgeH = Edge eId False

let (newEdgeH, newBoxH, newScoreH) = nextGameState nextEdgeH (eSet, bList) aiScore

t

putStrLn $ "Score after human move: " ++ show newScoreH

putStrLn "---"

gameLoopSeq newEdgeH newBoxH False newScoreH depth

| otherwise = do

putStrLn "AI move:"

let (_, nextEdgeC) = minimaxDepLim False depth (eSet, bList, aiScore) (Edge 0

False)

putStrLn $ "AI chose:" ++ show nextEdgeC

let (newEdgeC, newBoxC, newScoreC) = nextGameState nextEdgeC (eSet, bList) aiScore

t

putStrLn $ "Score after AI move: " ++ show newScoreC

putStrLn "---"

gameLoopSeq newEdgeC newBoxC True newScoreC depth

gameLoopPar :: Set.Set Edge -> [Box] -> Bool -> Int -> Int -> Int -> IO Int

gameLoopPar eSet bList t aiScore depth pDepth

| Set.null eSet = return aiScore

| t = do

putStrLn "HUMAN move:"

putStrLn "Available box list: "

mapM_ print bList

eId <- getHumanMove eSet

let nextEdgeH = Edge eId False

let (newEdgeH, newBoxH, newScoreH) = nextGameState nextEdgeH (eSet, bList) aiScore

t

putStrLn $ "Score after human move: " ++ show newScoreH

putStrLn "---"

gameLoopSeq newEdgeH newBoxH False newScoreH depth

| otherwise = do

putStrLn "AI move:"

let (_, nextEdgeC) = minimaxParDep (False, pDepth, depth, (eSet, bList, aiScore),

Edge 0 False)

putStrLn $ "AI chose:" ++ show nextEdgeC

let (newEdgeC, newBoxC, newScoreC) = nextGameState nextEdgeC (eSet, bList) aiScore

t

putStrLn $ "Score after AI move: " ++ show newScoreC

putStrLn "---"

gameLoopSeq newEdgeC newBoxC True newScoreC depth

{-

cmpScore:

param1: computer score

param2: human score

Return: -1 = COMPUTER win

0 = Tie

1 = HUMAN win

cmpScore :: Int a => a -> a -> a

cmpScore cScore hScore | cScore > hScore = -1

| hScore > cScore = 1

| otherwise = 0

-}

nextGameState :: Edge -> (Set.Set Edge, [Box]) -> Int -> Bool -> (Set.Set Edge, [Box],

Int)

nextGameState e (eSet, bList) score player =

if player

then (newS, newL, score - sUpdate)

else (newS, newL, score + sUpdate)

where

(newS, newL, sUpdate) = gameAction e (eSet, bList)

{-

gameAction:

param1: player selected edge (type of Edge) to remove

param2: (x1, x2, x3), s.t. x1 is the current set of available edges,

x2 is the current list of available boxes,

x3 is the current score of the player.

Return: (e1, e2, e3), s.t. e1 is new set of remaining edges,

e2 is new list of remaining boxes,

e3 is the updated score

-}

gameAction :: Edge -> (Set.Set Edge, [Box]) -> (Set.Set Edge, [Box], Int)

gameAction targetEdge (eSet, bList) = (Set.delete targetEdge eSet, newBoxList,

scoreChanged)

where

applyAction (accl, newList) b

| not (containEdge targetEdge (edges b)) = (accl, b : newList)

| containEdge targetEdge (edges b) && boxFilled b = (accl + val b, newList)

| otherwise = (accl, newBox b : newList)

newBox box = Box (newEdgeList (edges box)) (val box)

newEdgeList oldList = Edge (eid targetEdge) True : filter (/= targetEdge) oldList

containEdge tar eList = targetEdge `elem` eList

boxFilled box = all (\(Edge _ f) -> f) (filter (/= targetEdge) (edges box))

(scoreChanged, newBoxList) = foldl applyAction (0, []) bList

getHumanMove :: Set.Set Edge -> IO Int

getHumanMove eSet = do

putStrLn "Please make the next move."

putStrLn $ "Available edges: " ++ show (printEdgeList $ Set.toList eSet)

read <$> getLine

-- base minimax

-- minimax :: Bool -> (Set.Set Edge, [Box], Int) -> Edge -> (Int, Edge)

-- minimax player (edgeset, boxlist, aiScore) edge

-- | rootnode = bestMove [minimax True x e | (x, e) <- initExpandedStates]

-- | terminal = (aiScore, edge)

-- | not player = bestMove [minimax True x e | (x, e) <- subExpandedStates]

-- | player = worstMove [minimax False x e | (x, e) <- subExpandedStates]

-- | otherwise = error "invalid game state"

-- where

-- initExpandedStates = [(getNextGameState e, e) | e <- edgelist]

-- subExpandedStates = [(getNextGameState e, edge) | e <- edgelist]

-- getNextGameState someEdge = nextGameState someEdge (edgeset, boxlist) aiScore

player

-- edgelist = Set.toList edgeset

-- terminal = Set.null edgeset

-- rootnode = edge == Edge 0 False

{-

minimaxDepLim:

param1: player -> current player (True for human, False for AI)

param2: depth -> levels remained to traverse from current node

param3: (edgeset, boxlist, aiScore) -> edgeset is a set of available edges,

boxlist is a list of available boxes,

aiScore is the current score of AI/board.

param4: edge -> the initially chosen edge for this branch of the tree

return: (aiScore, Edge) -> best move for AI

-}

minimaxDepLim :: (Eq t, Num t) => Bool -> t -> (Set.Set Edge, [Box], Int) -> Edge ->

(Int, Edge)

minimaxDepLim player depth (edgeset, boxlist, aiScore) edge

| rootnode = bestMove [minimaxDepLim True newDepth x e | (x, e) <-

initExpandedStates]

| terminal || depth == 0 = (aiScore, edge)

| not player = bestMove [minimaxDepLim True newDepth x e | (x, e) <-

subExpandedStates]

| player = worstMove [minimaxDepLim False newDepth x e | (x, e) <-

subExpandedStates]

| otherwise = error "invalid game state"

where

newDepth = depth - 1

initExpandedStates = [(getNextGameState e, e) | e <- edgelist]

subExpandedStates = [(getNextGameState e, edge) | e <- edgelist]

getNextGameState someEdge = nextGameState someEdge (edgeset, boxlist) aiScore

player

edgelist = Set.toList edgeset

terminal = Set.null edgeset

rootnode = edge == Edge 0 False

{-

minimaxParDep:

param1: player -> current player (True for human, False for AI)

param2: parDepth -> parallel levels remained to traverse from current node

param2: seqDepth -> sequential levels remained to traverse from current node

param4: (edgeset, boxlist, aiScore) -> edgeset is a set of available edges,

boxlist is a list of available boxes,

aiScore is the current score of AI/board.

param5: edge -> the initially chosen edge for this branch of the tree

return: (aiScore, Edge) -> best move for AI

-}

minimaxParDep :: (Eq a, Eq t, Num t, Num a) => (Bool, a, t, (Set.Set Edge, [Box],

Int), Edge) -> (Int, Edge)

minimaxParDep (player, parDepth, seqDepth, (edgeset, boxlist, aiScore), edge)

| parDepth == 0 = minimaxDepLim player seqDepth (edgeset, boxlist,

aiScore) edge

| rootnode = bestMove parResultInitMax

| terminal = (aiScore, edge)

| not player = bestMove parResultSubMax

| player = worstMove parResultSubMin

| otherwise = error "invalid game state"

where

parResultInitMax = map minimaxParDep paramListInitMax `using` parList rseq

parResultSubMax = map minimaxParDep paramListSubMax `using` parList rseq

parResultSubMin = map minimaxParDep paramListSubMax `using` parList rseq

newParDepth = parDepth - 1

newSeqDepth = seqDepth - 1

paramListInitMax = [(True, newParDepth, newSeqDepth, x, e) | (x, e) <-

initExpandedStates]

paramListSubMax = [(True, newParDepth, newSeqDepth, x, e) | (x, e) <-

subExpandedStates]

paramListSubMin = [(False, newParDepth, newSeqDepth, x, e) | (x, e) <-

subExpandedStates]

initExpandedStates = [(getNextGameState e, e) | e <- edgelist]

subExpandedStates = [(getNextGameState e, edge) | e <- edgelist]

getNextGameState someEdge = nextGameState someEdge (edgeset, boxlist) aiScore

player

edgelist = Set.toList edgeset

terminal = Set.null edgeset

rootnode = edge == Edge 0 False

{-

bestMove:

param1: [(score, edge)] -> a list of available move and the associated heuristic

return: (aiScore, Edge) -> best move for AI(with highest heuristic)

-}

bestMove :: [(Int, Edge)] -> (Int, Edge)

bestMove [(score, edge)] = (score, edge)

bestMove ((score, edge) : (score', edge') : xs) = bestMove (if score >= score' then

(score, edge) : xs else (score', edge') : xs)

bestMove _ = error "BestMove: not a valid move"

{-

worstMove:

param1: [(score, edge)] -> a list of available move and the associated heuristic

return: (aiScore, Edge) -> worst move for AI(with lowerst heuristic)

-}

worstMove :: [(Int, Edge)] -> (Int, Edge)

worstMove [(score, edge)] = (score, edge)

worstMove ((score, edge) : (score', edge') : xs) = worstMove (if score <= score' then

(score, edge) : xs else (score', edge') : xs)

worstMove _ = error "WorstMove: not a valid move"

