Parallelized Decision Tree Algorithm

(COMS 4995 - Parallel Functional Programming)
Fall 2021

Phan Anh Nguyen (pn2363) Azhaan Zahabee (az2641)

1 Introduction

Decision Trees are a class of supervised machine learning algorithms that are often used to solve both
regression and classification problems. At a high level, the Decision Tree algorithm takes in a set
of input data with corresponding labels, greedily builds a lookup-tree where data is grouped at each
level according to a ’best-feature’ to split the data on, and recursively applies this splitting down the
branches until a stop criterion is met. During test time, a new input is classified by following the
decision tree nodes until a leaf is reached. The predicted label is that associated with the leaf that the
input data ultimately lands on.

The choice of which feature to best split on is based on two concepts: Entropy and Information
Gain. Entropy for a set of data that is split on a feature that has ¢ classes measures the degree of
‘impurity’ associated with a set of data. It is defined as:

Entropy(Node) = Z —piloga(pi), pi = proportion of data with label 4 (1)
i=1

Information gain measures the expected reduction in entropy caused by partitioning the exam-
ples/data according to an attribute/feature. It is defined as:

| Node, |

Ent Node,. 2
Nade | Entropy(Node, (2)

Gain(Node, A) = Entropy(Node) — Z
ceA

From these two equations, we can identify the 'best attribute/feature’ to split our data on by selecting
the attribute that gives us the most information gain at any node.

For our implementation, we will be focusing on Decision Tree algorithms for classification problems
as regresison-based problems require extra pre-processing in the form of data discretization, which we
will not focus on in this project. The bottleneck with Decision Tree algorithms lies within the initial
building of the tree due to the potential exponential branching factor. The prediction process is trivial
as we simply follow the tree until we reach a leaf, going through branches based on what our new data
point is. As such, we will only be focusing on implementing and optimizing the tree-building algorithm.

In our report, we discuss several parallelization strategies that were attempted, and discuss the af-

fects that different datasets can have on the runtime and speed up achieved. We were able to achieve
anywhere between 1.3x and 16x speedup for our decision tree algorithm.

2 Sequential Implementation

For our project, we referenced a sequential decision tree algorithm implemented by Cortland Walker
as the starting point with which to modify and parallelize.

2.1 Data Structure

Label and Feature of the DataSet are stored as strings. Each row of the DataSet comprises of a list of
strings (features) and a label. To store the final constructed decision tree, we created a data structure
DTree that keeps record of the feature used at each node used for branching as well as the list of
children trees.

type Label = String

type Feature = String

type Entropy = Double

type DataSet = [([String], Label)]

data DTree = DTree { feature :: String, children :: [DTree] }
| Node String String deriving Show

2.2 Tree Construction

In this part, we begin with the root feature to construct the decision tree. The dataTrees function
helps in splitting up the dataset by the attributes that contributes the highest information gain. This
function returns a map of key value pairs, where key corresponds to each class of the selected feature
based on highest information gain and value corresponds to all other feature values except the selected
feature. Then foldrWithKey proceeds with the construction of child trees based on the new information
from dataTrees function.

dtree :: String -> DataSet -> DTree
dtree f d
| allEqual (labels strat d) = Node f $ head (labels strat d)
| otherwise = DTree f $§ M.foldrWithKey (\k a b -> b ++ [dtree k a]) [] (datatrees d)

datatrees :: DataSet -> M.Map String DataSet
datatrees d = foldl (\m (x,n) -> M.insertWith (++) (x!!'i) [((x “dropAt™ i), fst (cs!!m))] m)
M.empty (zip (samples d) [0..])
where
i = highestInformationGain d
dropAt xs i = let (a,b) = splitAt i xs in a ++ drop 1 b
cs = zip (labels d) [0..]

2.3 Entropy Calculation

This is a simple function where the entropy calculation is done based on the formula provided in the
introduction section. The input is the list of labels corresponding to a particular class of a feature.
Later, in the report we have tried to parallelize this calculation of entropy.

entropy :: (Eq a) => [a] -> Entropy
entropy xs = sum $ map (\x -> prob x * into x) $ nub xs
where
prob x = (length' (elemIndices x xs)) / (length' xs)
into x = negate $ logBase 2 (prob x)
length' xs = fromIntegral $ length xs

2.4 Information Gain Calculation

The function defined here handles the core functionality of the algorithm. From the given DataSet we
construct the list attr that contains pair of (class, label) for each feature in the highestInformationGain

function. This list is used to calculate information gain value by selecting each feature separately and
the highest information gain value is returned as a result.

In the informationGain function, we make use of helper function splitAttr to split the attr list into
separate lists having labels corresponding to a particular class of a feature. Then this list is used to
calculate the entropy and resultant information gain value.

informationGain :: [Label] -> [(Feature, Label)] -> Double
informationGain s a = entropy s - newInformation
where

eMap = splitEntropy $ splitAttr a
m = splitAttr a
toDouble x = read x :: Double
ratio x y = (fromIntegral x) / (fromIntegral y)
sumE = M.map (\x -> (fromIntegral.length) x / (fromIntegral.length) s) m
newInformation = M.foldWithKey (\k a b -> b + a*(eMap'k)) O sumE

-- Determine which attribute contributes the highest information gain
highestInformationGain :: DataSet -> Int
highestInformationGain d = snd $ maximum $ zip (map ((informationGain . labels) d) attrs) [0..]
where
attrs = map (attr d) [0..s-1]
attr d n = map (\(xs,x) -> (xs!!'n,x)) d
s = (length . fst . head) d

3 Proof of Concept

We show the correctness of this sequential algorithm by comparing the output of the sequential pro-
gram to mathematically deduced results that we expect a correct decision tree to output. We use the
toy example provided from Cortland Walker’s repository that builds the classifier using 14 data points,
with 4 features each contain between 2-3 possible classes. The labels in this data is binary, i.e., either
Yes or No.

Table: toy data

Sunny Hot High Weak No

Sunny Hot High Strong | No
Overcast | Hot High Weak | Yes

Rain Mild High Weak | Yes
Rain Cool Normal Weak |Yes
Rain Cool Normal | Strong | No

Overcast | Cool Normal Strong | Yes
Sunny Mild High Weak | No
Sunny Cool Normal Weak | Yes
Rain Mild Normal Weak | Yes
Sunny Mild Normal Strong | Yes
Overcast | Mild High Strong | Yes
Overcast | Hot Normal Weak | Yes

Rain Mild High Strong | No

Below is the output of the sequential algorithm ran on our toy example:

DTree {feature= "root", children = [

DTree {feature="Sunny", children=[
Node "Normal" "Yes",
Node "High""No"l},

DTree {feature="Rain", children=[
Node "Weak" "Yes",
Node "Strong" "No"ll},

Node "Overcast" "Yes"]}

We first calculate the feature used for splitting at the "root" level:
Entropy(root) = — 2 (logaZ) — 2 (loga %) = 0.940

Gain(Root, Feature” Sunny”,” Rain”,” Overcast”)

= Entropy(” Root”) — [Entropy(” Sunny”) + Entropy(” Rain”) + Entropy(” Overcast”))
— 094 — (£1(~2(log2) — 2(loga2))) — (£5(~2(log2?) — 2(loga2))) — (5 (~1(loga1) — 0))
= 0.246

Gain(Root, Feature” Hot”,” Cool” ,” Mild”)

= Entropy(” Root”) — [Entropy(” Hot”) + Entropy(” Cool”) + Entropy(” Mild”)]

— 094 — (4 (~2(10922) — 2(10922))) — (£ (~2(loga2) — £(loga))) — (2 (—3(10ga3) — H(logs 1))
= 0.0289

Gain(Root, Feature”Weak”,” Strong”)

= Entropy(” Root”) — [Entropy(”Weak”) + Entropy(” Strong”)]

= 0.9~ (f (~2(loga?) ~ 210ga2)) ~ (&(~L(log}) — 2(10g:2))
=0.152

Based on this, we would choose to split the root by the feature whose classes are "Sunny","Rain","Overcast".
This is inline with what the algorithm predicts.

We perform the same calculations on the next level for each of the "Sunny", "Rain" and "Over-
cast" nodes. We see that for the "Sunny" node, we obtain the highest gain by splitting the feature
whose classes are "High","Normal". For the "Rain" node, highest gain is obtained by splitting on the
"Weak","Strong" feature. We notice that next level nodes are pure so we stop there. For the "Over-
cast" node, we realize that the node is pure as all rows have a label of "Yes" so no further splitting is
needed and we stop there.

Thus, we see that our algorithm has produced the correct decision tree.

4 Effect of Dataset on Algorithmic Runtime

The size and depth of a decision tree, and therefore algorithm runtime, is highly influenced by the
underlying dataset being used. At each node, we choose the highest features to split the dataset and
continue to build the tree until the leaf nodes are pure or all features have been used. Since no feature
is re-used in the implementation of this algorithm, the number of features thus creates an upper bound
on the depth of the tree.

Furthermore, the number of children (branching factor) that is created after we decide on a fea-
ture to split by is also dependent on the number of possible classes that exist for that feature in the
dataset. For a binary feature, there are only two children, whereas a multi-class feature could generate
up to hundreds or thousands of children. Since we have to go through every data point to calculate

the entropy at each node, the runtime for the algorithm would be: O(nb? + k), where n is the number
of data points, b is the average branching factor, d is the depth of the final decision tree and k is the
remaining time spent on I/O or reading in of data.

By Amdahl’s Law, the theoretical maximum speedup is dependent on the proportion of work that
is parallelizable. Depending on the dataset, the proportion of time spent on building the tree versus
reading in the data can thus affect the degree of speedup. In our report, we test our strategies with
2 different datasets to explore how changes in feature number and number of classes within a feature
affect speedup gain from parallelization.

The first dataset is the "Cat in the Dat II" dataset from Kaggle, which contains 300,000 training
samples with 17 features. Each feature may have up to 5 different classes and there are 2 possible Y
labels to be predicted.

The second dataset is a subset of the "A-Z MNIST Letter Recognition: dataset. This is a letter-
classification dataset with roughly 25,000 data points. The training data consists of 28x28 images that
have been vectorized to obtain 784 features for each datapoint, which each feature having potentially
256 different classes that correspond to a pixel RGB value between 0-255. There are 26 possible y
labels for each datapoint which correspond to each letter of the alphabet.

5 Parallelization Strategies
We have identified several potential sources of parallelization that can be done:

1. Multi-core parallelization: We can try to increase the number of cores accessible by Haskell in
running the program. In our report, we attempt to use up to 8 cores to run both sequential and
parallelized versions of the algorithm. We expect to see minor to no speed-ups in the sequential
version. For the parallelized algorithm, we expect to see speed-up to scale acccordingly as we
increase core count until a maximum whereby any increased performance gain from more cores
will be outweighed by increased overhead costs.

2. Entropy parallelization: The sequential implementation of the Entropy calculation for a node
maps the entropy equation over each possible class that the label can have. For a multi-label
dataset, we could potentially parallelize the entropy calculation for each class. Since the entropy
equation solely depends on values in a current class, as well as the number of datapoints that
have a specific class within a feature, we can potentially parallelize this process.

3. Information Gain parallelization: The sequential implementation of the Highest Information
Gain calculation for a node maps over each possible attribute that we could split on and chooses
the attribute that results in the highest gain. Since the information gain calculations self-
contained within the columns (i.e: does not depend on information gain results from other
columns), we can also potentially parallelize this process.

4. Miscellaneous row-based operations parallelization: Lastly, the sequential implementation
has several helper functions that map on the row/datapoint level such as the ’samples’ or the
’labels’ function. These functions are used deeper within the entropy /information gain function
call and potentially provide a more granular level of parallelization in addition to the two main
sources of parallelization previously described.

Based on the above sources of parallelization, we define 4 potential parallelization strategies that
can be applied to our 2 datasets:

5.1 Increasing Core Count

With this strategy, we simply increase the number of cores/Haskell Execution Contexts (HECs) used.
There is no change to the underlying decision tree algorithm. This strategy serves as a baseline to
determine efficacy of other parallelization strategies with 1, 2, 4 and 8 core.

Cat in the Dat II Dataset

Timeline

)
&
o
&
=
&
7
&
I¥]

[

(KT
Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events

Total time: 17.331s

Mutator time: 7.361s

GC time: 9.970s

Productivity: 42.5% of mutator vs total

[+]

Fig 1. Sequential Algorithm/1-Core, Cat-in-the-dat dataset

A-7Z Handwritten Dataset

Timeline

0s 50s 100s 1508 =

Acvity

[l

(3]

2]

Time | HaaplGC |Sparks'ats|5parkslza:| Process info | Raw events
Totaltime: 165.014s
Mutator time: 149.506s
GC time: 15418s
Productivity: 90.7% of mutator vs total

Fig 2. Sequential Algorithm/1-Core, A-Z handwritten dataset

5.2 Single-source parallelization

With this strategy, in addition to using multiple cores, we attempted to obtain performance gains
by either parallelizing the Entropy calculation OR Information Gain. This serves to determine which
source of parallelization results in more performance gains.

Entropy is parallelized by implementing the following code snippet:

entropy :: (Eq a) => String -> [a] -> Entropy
entropy strat xs | strat “elem”™ ["2","4","5"] = sum $ parMap rseq (\x -> prob x * into x) $ nub xs

| otherwise = sum $ map (\x -> prob x * into x) $ nub xs
where

prob x = (length' (elemIndices x xs))/(length' xs)
into x = negate $ logBase 2 (prob x)
length' xs = fromIntegral $ length xs

Information Gain is parallelized by implementing the following code snippet:

highestInformationGain :: String -> DataSet -> Int
highestInformationGain strat d = snd $ maximum $ infoGains
where
infoGains
| strat “elem™ ["3", "4", "5"] = zip (parMap rseq (((informationGain strat)
. (classes strat)) d) attrs) [0..]
| otherwise = zip (map (((informationGain strat) . (classes strat)) d) attrs) [0..]
attrs = map (attr d) [0..s-1]
attr d n = map (\(xs,x) -> (xs!!n,x)) d
s = (length . fst . head) d

Entropy - Cat in the Dat II Dataset

Timeline

0s 88 10s 158 20s

- e — - a1 sl]l s el el o
suoe o L N e
(R S, . JmpmDSm_ms,_..... m—"—n__—s -,
- suoe v i e S
|= e — - SRRSO S T N _
b e wrmcw i T .
- e —— - SRS J I N S8 N N NN _—
swr w o e L e T

Iv]

Ll

(KT

Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events

Total ime: 21.642s
Mutator time: 11.000s
GC time: 106425
Productivity: [50.8% of mutator vs total

Fig 3. Entropy Parallelization/8-Core, Cat-in-the-dat dataset

Entropy - A-Z Handwritten Dataset

Timeline

1+]

0s 108 208 30s 408 50s 60s 70s 80s 90s 100s 110s
L L

<" N O 10 0 0) 0 O OO | RO 0 0 O 11

- OO 0O 1000 O OO D00 0 1 OO0 00 R 1
[VO 00 000 OO O O NN OO 000 R
[000 00100 N 00000 0 1

= VOO 000 1000 OO0 0 NN OO OO RO

- O 0O 000 O 0 OO 0 00 0O 1

= OO0 000 OO O O 0O OO —

iK1l o
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total ime: 127 .696s

Mutator time: 106.930s

GC time: 20.765s
Productivity: 83.7% of mutator vs total

Fig 4. Entropy Parallelization/8-Core, A-Z Handwritten dataset

Information Gain - Cat in the Dat II Dataset

Timeline

I¥]

T N R R S T— . RN

e ———— w e o T S
- e w o . L ES—
- e w e R . F—
- T w v T O W——
- T w o T ...
- T w o . . . S—.
- e —— - — e | W

Ll

[5] 3]
Time | Hoap | GC | Spark stats | Spark sizes | Process info | Raw events

Total ime: 17.130s

Mutator time: 8.202s

GC time: 928}

Productivity: [53.7% of mutator vs total

Fig 5. Information Gain Parallelization/8-Core, Cat-in-the-dat dataset

Information Gain - A-Z Handwritten Dataset

Timeline

0s 5s 10s 18s 20s 25s 30s 35s 40s 455 50s =
L L L L L L L

= : ~ [RO TR NN GORNTEC CY EATOU EMTRCHREERUAED E

(=0 1]
Time | Heap | GG | Spark stts | Sparksizes | Procsss nfo | Raw events |

Total time: 55.946s

Mutator time: 41.090s

GC time: 14.856s
Productivity: 73.4% of mutator vs total

(K

Fig 6. Information Gain Parallelization/8-Core, A-Z Handwritten dataset

5.3 Combined parallelization

It seeks to combine parallelization from both Entropy and Information Gain to maximize performance.

Combined - Cat in the Dat II Dataset

Timeline

Ix]

- I8 [LLL b a § n n m m I _I -mm

= 1 MMM AT T n L] Im L I “-MMI\F

- T e T R -
- T u o I R
- e u e T
- S e u .
- S e S e Y

KT 0}

Time | Heap | GG | Spari stats | Spark sizes | Process info | Raw events

Totaltime: 169158
Mutator time: B.056s
GCtime: P.B59s
Productivity: 47.6% of mutator v total

Fig 7. Combined Parallelization/8-Core, Cat-in-the-dat dataset

Combined - A-Z Handwritten Dataset

Timeline

Time | Heap | GC | Spar stats | Spark sizes | Process info | Raw events |

Totaltime: 55.040s
Mutator time: 42.918s
GC time: 121228
Productivity: 78.0% of mutator vs total

Fig 8. Combined Parallelization/8-Core, A-Z Handwritten dataset

5.4 Combined + Miscellaneous row-based operations parallelization

This strategy seeks to combine parallelization from both Entropy and Information Gain to maximize
performance gains as well as attempts to leverage more granular parallelization in the form of down-
stream row-based operations such as ’samples’ and ’labels’ functions.

’Samples’ function is parallelized by implementing the following code snippet:

samples :: String -> DataSet -> [[String]]
samples strat sdata | strat == "5" = withStrategy (parBuffer 100 rdeepseq) (map fst sdata)
| otherwise = map fst sdata

’Labels’ function is parallelized by implementing the following code snippet:

labels :: String -> DataSet -> [Class]
labels strat sdata | strat == "5" = withStrategy (parBuffer 100 rdeepseq) (map snd sdata)
| otherwise = map snd sdata

10

Combined + Misc - Cat in the Dat II Dataset

Timeline

0s 1s 2s 3s

s

[

s

8s

9s

10s

11s

12s

13s

14s

158

16s

1+

(KT

]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time:

GC time:
Productivity:

Mutator time:

17.489s

10.023s

[7.466s

57.3% of mutator vs total

Fig 9. Combined + Misc Parallelization/8-Core, Cat-in-the-dat dataset

Combined + Misc - A-Z Handwritten Dataset

Timeline

L+]

(]

[31

Time | Heap | GC | Spar stats | Spark sizes | Process info | Raw events |

Total time:
Mutator time:
GC time:
Productivity:

50.027s
36.287s
13.740s
72.5% of mutator vs total

Fig 10. Combined + Misc Parallelization/8-Core, A-Z Handwritten dataset

6 Discussion

We first look at the use of multiple cores for the sequential algorithm. Looking at the threadscope
event log for both datasets, we see that most of the work is still completed by only one core. This
suggests that the initial algorithm is highly sequential and was implemented in a way such that the
system is unable to utilize parallelism even if we throw more cores at the program. As such, there is
almost no improvement in runtimes as seen in Fig.11, and Fig.12.

Overall Performance - Cat in the Dat II Dataset

'Cat in the Dat' Dataset - Strategy Performance vs. Num. Cores
(lower is better)

20

Runtime [s)

10

=—s—Strategy 1 [Sequential)
= Strategy 2 [Entropy Only)
=—s—Strategy 3 (Inform ation Gain Only)

Strategy 4 (Entropy + Information Gain)

e SEra bigy 5 (Entropy + Information Gain + Misc)

o 1 2 3 4 5 [7 B 9
Murmn. Cores

Fig 11. Overall Performance of Strategies across cores, Cat in the Dat II dataset

Overall Performance - A-Z Handwritten Dataset

A-Z Handwritten' Dataset - Strategy Performance vs. Num. Cores
(lower is better)

Runtime [s)

e —
e Sty 1 (Sequential)
=—e—Strategy 2 (Entropy Orly)
=—a—Ctrategy 3 (Information Gain Only)

Strategy 4 (Entropy + Infarmation Gain)

—8—Strategy 5 (Entraopy = Information Gain + Misc)

o 1 2 3 4 5 & 7 a 9
Mum. Cores

Fig 12. Overall Performance of Strategies across cores, A-Z Handwritten dataset

12

We only start to notice multiple cores being used by the program once parallelized Entropy and
Information Gain calculations are implemented. Looking at graphs of Fig.3, Fig.4, Fig.5, and
Fig.6, we see multiple cores being used which suggests that parallelization is working.

To calculate the theoretical speedup limit for each dataset, we need to look at what proportion of
total work is parallelizable. We noticed that for all parallel strategies implemented, there is always a
fixed ~11 -12 seconds of sequential work being done. Given that paralellism is implemented relatively
early on in the actual building of the Decision Tree, we suspect that this sequential portion is due
to I/O from reading in the input data. Since we are using the external *Text’ library for this part of
the algorithm, we did not implement parallelism here. This seemed to be the only sequential portion.
Since the sequential version of the 'Cat in the Dat’ dataset takes ~17.3 seconds and that of the 'A-
Z Handwritten’ dataset takes ~165 seconds, we estimate potential theoretical maximum speedup of
~1.5x for the ’Cat in the Dat’ dataset and ~14x for the ’A-Z Handwritten’ dataset.

In reality, the maximum speedup we achieved for the ’Cat in the Dat’ dataset at was close to ex-
pected at ~1.3x, while far from expected for the ’A-Z Handwritten’ dataset at ~3.3x. For the 'A-Z
Handwritten’ dataset, we suspect that additional performance gains may be obtained by increasing the
number of cores used as shown in Fig.12. However, notice that we do see a tapering off of performance
gains from these figures which suggests that the additional overhead from increasing core count will
negate any additional performance gains as we reach a certain core count. Hence, it seems like there
can be improvements made to our implementation of paralellization. We discuss an additional source
of parallelization that can be implemented as future work in the Conclusion section.

Next, we wanted to compare the different sources of parallelization and see how much they con-
tribute to the overall performance gain. Firstly, we look at parallelizing Entropy. For the 'Cat in
the Dat’ dataset, we see only minor gains (~1.04x) from parallelizing Entropy with 2 cores. With 4
and 8 cores, we actually obtain worse performance than the sequential counterpart. Since there are
only 2 possible classes to parallelize for each Entropy calculation, we suspect that the higher overhead
associated with scheduling parallelization did not result in any significant improvement. The situation
is only slightly improved when we look at the ’A-Z Handwritten’ dataset with 26 possible classes. The
maximum speedup obtained was (~1.3x). This seems to suggest that parallelizing Entropy may not
have a significant affect on performance. However, we realize that these results are only preliminary. In
practice, it is not uncommon for datasets to have much more than 26 possible labels. Several Natural
Language Processing tasks such as Named Entity Recognition or Next-word Prediction may have up
to several million possible Y labels. A possible improvement on this work would be to test this strategy
against such datasets. Unfortunately, due to time and resources constraints, we were unable to find
and test such a dataset while completing our project.

Parallelizing Information Gain seems to tell a different story, however. With the ’Cat in the Dat’
dataset, we were able to obtain a ~1.24x speedup, compared to the ~1.5x theoretical maximum.
With the ’A-Z handwritten’ dataset, we were able to obtain a ~2.95x speedup, which is significantly
better than the gains obtained from parallizing Entropy.

Overall, the best strategy for both datasets seemed to be Strategy 5. With the ’Cat in the Dat’
dataset, we were able to obtain a ~1.3x speedup, while the ’A-Z Handwritten’ dataset obtained
~3.3x. In this strategy, we apply all sources of parallelization from both Entropy and Information
Gain, as well as parallelized row-based operations such as the ’samples’ and ’labels’ function which
extract the features and labels from a data row respectively. We notice that the optimal number of
cores varies between dataset. For the the 'Cat in the Dat’ dataset, we seem to reach optimal cores
much earlier on at 4 cores (Fig.11), while with the ’A-Z Handwritten’ dataset, it seems that we are
still obtaining performance gains as we approach 8 cores (Fig.12). This suggests that in practice,
exact number of cores to provide will need some fine-tuning of hyperparameters.

13

7 Conclusion

Overall, we see that the Decision Tree algorithm is a highly parallelizable algortihm as we were able to
obtain up to ~3.3x speedup through parallelization of Entropy, Information Gain, Row-based
operations, as well as increasing the number of cores provided to the program. We also determined
that the exact degree of speedup, as well as how much each source of parallelization contributes to the
overall performance gain is dependent on the underlying data being used.

8 Future Work

Throughout our experiements, we have noted that the data input process was mostly sequential
throughout all strategies implemented. Given further resources, we would like to potentially explore
ways to parallelize this process in the future. This is an important consideration as for specific datasets,
reading in the data constitutes the majority of the work being done, and therefore, sets a limit of the
degree of parallelization by Amdahl’s law.

Lastly, we would like to point out another source of parallelization that could have been implemented.
We realized that since different feature branches do not rely on each other for any calculations, it is
theoretically possible to parallelize the recursive creation of branches in a Decision Tree. The sequen-
tial algorithm, however, uses the "M.foldrwithkey’ function to achieve this, which we have found is not
easily parallelizable. As such, if we were to re-implement this algorithm from scratch, we will try to
design the tree-building functions with parallelization in mind.

9 References and Acknowledgements

We would like to thank Professor Edwards and the TAs for your guidance throughout the semester!

In completion of our report, we have consulted the following references:

e Sequential Decision Tree Classifier implementation, Cortland Walker,
Github: https://github.com/Cortlandd/Haskell-Data-Tree-Classifier

e Dataset 1: https://www.kaggle.com/c/cat-in-the-dat-ii/overview

e Dataset 2: https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format
o Intelligence, A Modern Approach (Fourth Edition), Stuart Russel, Peter Norvig

e Parallel and Concurrent Programming in Haskell, Simon Marlow

e COMS 4995 - Parallel Functional Programming Lecture Notes

e COMS 4701 - Artificial Intelligence Lecture Notes

e https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

10 Code Listing

module Main where

import Data.List(nub, elemIndices)
import qualified Data.Map as M
import Text.CSV

import Control.Parallel.Strategies
import System.Exit(exitFailure)
import System.Environment (getArgs)

14

https://github.com/Cortlandd/Haskell-Data-Tree-Classifier
https://www.kaggle.com/c/cat-in-the-dat-ii/overview
https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

-- Better type synonyms for better understanding
-- of what data is being passed around.

type Class = String

type Feature = String

type Entropy = Double
type DataSet = [([String], Class)]

-- Define a data structure for a decision tree that'll be constructed
data DTree = DTree { feature :: String, children :: [DTree] }
| Node String String deriving Show

main :: I0 ()
main = do
args <- getArgs
[filename, strat] <- case args of
[f, s] -> return [f, s]
-> do
error "Usage: stack run <filename> <strat> -- +RTS -N<numHEC> -1ls -s"

exitFailure
strategy <- case strat of
x | x “elem™ ["1", "2", "3", "4" "5"] -> do return strat
_ -> do
error "Usage: Valid strat options are: <1> - Sequential, <2> - Single-Choice (Entropy),
<3> - Single-Choice (InformationGain), <4> - Both (w/o Misc.), <5> - Both (with Misc)"
exitFailure
rawCSV <- parseCSVFromFile ("src/" ++ filename)
either handleError doWork rawCSV strategy

handleError = error "invalid file"

-- IF file is read successfully
-- THEN remove any invalid CSV records and construct a decision tree out of it
doWork :: CSV -> String -> I0 ()
doWork fcsv strat = do
let removelnvalids = filter (\x -> length x > 1)
-- #1
let myData = map (\x -> (init x, last x)) $ removeIlnvalids fcsv
let result = dtree strat "root" myData
let firstNodeChildren = length b
where DTree a b = result
print "Final Decision Tree:"

print result

-- Helper functions to break up the DataSEt tuple into

-- a list of samples or list of classes.

-- #2

samples :: String -> DataSet -> [[String]]

samples strat sdata | strat == "5" = parMap rseq fst sdata
| otherwise = map fst sdata

-- #3

classes :: String -> DataSet -> [Class]

classes strat sdata | strat == "5" = parMap rseq snd sdata

| otherwise = map snd sdata

-- Calculate the entropy of a list of walues

== &
entropy :: (Eq a) => String -> [a] -> Entropy
entropy strat xs | strat “elem” ["2","4","5"] = sum $ parMap rseq (\x -> prob x * into x) $ nub xs

15

| otherwise = sum $ map (\x -> prob x * into x) $ nub xs
where
prob x = (length' (elemIndices x xs))/(length' xs)
into x = negate $ logBase 2 (prob x)
length' xs = fromIntegral $ length xs

-- Split an attribute by its features
splitAttr :: [(Feature, Class)] -> M.Map Feature [Class]
splitAttr dc = foldl (\m (f,c) -> M.insertWith (++) £ [c] m) M.empty dc

-- Obtain each of the entropies from splitting up an attribute by its features.
splitEntropy :: String -> M.Map Feature [Class] -> M.Map Feature Entropy
splitEntropy strat m = M.map (entropy strat) m

-- Compute the information gained from splitting up
-- an attridbute by its features
informationGain :: String -> [Class] -> [(Feature, Class)] -> Double
informationGain strat s a = entropy strat s - newInformation
where
eMap = splitEntropy strat $ splitAttr a
m = splitAttr a
toDouble x = read x :: Double
ratio x y = (fromIntegral x) / (fromIntegral y)
sumE = M.map (\x -> (fromIntegral.length) x / (fromIntegral.length) s) m
newInformation = M.foldrWithKey (\k a b -> b + a*(eMap M.! k)) O sumE

-- Determine which attribute contributes the highest information gain
-- #5
highestInformationGain :: String -> DataSet -> Int
highestInformationGain strat d = snd $ maximum $ infoGains
where
infoGains
| strat “elem™ ["3", "4", "5"] =
zip (parMap rseq (((informationGain strat) . (classes strat)) d) attrs) [0..]
| otherwise = zip (map (((informationGain strat) . (classes strat)) d) attrs) [0..]
attrs = map (attr d) [0..s-1]
attr d n = map (\(xs,x) -> (xs!!'n,x)) d
s = (length . fst . head) d

-- Split up the dataset by the attributes that contributes the highest
-- information gain
datatrees :: String -> DataSet -> M.Map String DataSet
datatrees strat d = foldl (\m (x,n) -> M.insertWith (++) (x!'i) [((x “dropAt” i), fst (cs!!n))] m)
M.empty (zip (samples strat d) [0..])
where
i = highestInformationGain strat d
dropAt xs i = let (a,b) = splitAt i xs in a ++ drop 1 b
cs = zip (classes strat d) [0..]

-- 4 helper function to determine if all elements of a list are equal.

-- Used to check fi further splitting of a dataset is necessary by checking
-- 2f 2ts classes are identical.

allEqual :: Eq a => [a] -> Bool

allEqual [] = True

allEqual [_] = True
allEqual (x:xs) = x == (head xs) && allEqual xs

-- Construct the decision tree from a labeling and a dataset of samples

16

dtree :: String -> String -> DataSet -> DTree

dtree strat f d
| allEqual (classes strat d) = Node f $ head (classes strat d)

| otherwise = DTree f $ M.foldrWithKey (\k a b -> b ++ [dtree strat k a]) [] (datatrees strat d)

11 Appendix and Notes

Our code can be ran by first unpacking the zip file. Following that, we can run:

cd final-project
stack build

stack run <input-filename> <strategy> -- +RTS -N<Num. cores> -1ls -s

An example run would be:

stack run a-z-mnist.csv 3 -- +RTS -N4 -1s -s

Raw Eventlog Graphs

Cat-In-Dat Dataset - Strategy 1/1-Core

Timeline

0s 58

[E

Ll

2]
Tme'Haap'G:'Spammb Spark sizes | Process info | Raw events
Total time: 17.331s
Mutator time: 7.361s
GG time: 9.970s
Productivity: 42.5% of mutator vs total

Cat-In-Dat Dataset - Strategy 1/2-Core

Timeline

0s

Bs

11 10 1IN m m I _I I W \AII N N RN N T

[2]
Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events
Total ime: 17.575s
Mutator time: 7.572s
GC time: 10.004s
Productivity: 43.1% of mutator vs total

Ll

17

Cat-In-Dat Dataset - Strategy 1/4-Core

1]

- L0 | L | i J 11 T IIIIII\-IIIJI\I II-IIIIIIIHIIIIAIIHI\IHIIIIIIIII\IIIII\HIHAII IIIIIIHIII‘ ;

0 B A | L | m Ly I-\I\I\IJII R RN RN RN O N T R A 7 1 A f

[KIE

[0]
Time | Hoap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time: 18.785s8

Mutator time: 8.724s

GC time: 9.071s

Productivity: 51.7% of mutator vs total

Cat-In-Dat Dataset - Strategy 1/8-Core

Timeline

0s 55 10 158 208 =

1] 1 |

ety
= \

(O T | [] L J J\ T I\IIII\IIIIJ] II\-I-\-J\II\IIIIIIIIIIIIII\J lIIII\IIIII-IIHI\IIHIIIA LI
e

T T T [w [—— 00 O O 0 0 0 1
© OO 0N O S N R G S
weca

T T T [w [[|\|| Ill--J 0 10O 000 0 O 1
weca

(T O | [] w (] 1 10 O 0 0 00 0 1
wecs

0] w [- 00O O O 0 0 O 1
wece

I] w [| 10 B 00 0 1
e

0 [w (] [00 B O 0 00 0 1

[<] -]

Time | Heap | GC | Spark stats | Spark sizes | Process into | Raw events

Totaltime: 225505
Mutator ime: 10.704s
GC time: 11.846s
Productivity: 47.5% of mutator vs total

Cat-In-Dat Dataset - Strategy 2/1-Core

18

Timeline

0s

Iv]

[2]

[l

Time | Heap | GC | Spark stats | Spark sizes | Pracess info | Raw events |

Productivity: 42.0% of mutator vs total

1]
Totaltime: 21.185s
Mutator time: B.894s
GC time: 122918

Timeline

0s

Cat-In-Dat Dataset - Strategy 2/2-Core

Iv]

[

55 108 158
1 | 1
ety
HECO - W _ H m
HECt

m-._-q_J L IINIII\II\IIII'IIII\III \II- ' III I MI_I IM \II I IIIII _Il III II

Time | Heap | GC | Spar stats | Spark sizes | Process info | Raw events |

L

Totaltime: 16.943s
Mutator time: .170s

1

GC time: 9.773s
Productivity: 42.3% of mutator vs total

Timeline

0s 58

Cat-In-Dat Dataset - Strategy 2/4-Core

K1}

I
- \JJ I!I\II'II\I\FHIIIJ H' T ’ IIII III III\IIIIIJI I I I! I -”I II

LU l \J- IH\IJHIHI\IIIJ H' -II IIII IIIIIIII_!I I I Il I-H I
-II\I\ - \JJ II IJHI!\IIIJ H'-I IIII!HIJI I I F I-lﬁ '

1*]

Tm|Heap|Gc|Sparksvats|Sparksizas|Pmnasinm Raw events

Total time: ~ 18.906s
Mutator time: 10.243s

]

GC time: B.664s
Productivity: 54.2% of mutator vs total|

Cat-In-Dat Dataset - Strategy 2/8-Core

19

Timeline

! | ! |
i i i G i S S S S S

- srow- g o - Sl S B 8NN L

b e — - — Y N 1O R Wt W —

T [N N N N — S _a—_—_. |
- ———— - s] e e, S] :
- v o s b el b o LU L ||
- —— - SRS | ¥ N Y N N I S

- e i o IR [§ KSS JF N R R

- e —— - SRSSSSY S NS NSRS N [N | Q‘
T | Haap | G | park st | Spark sizes Procass o [Raw events

Cat-In-Dat Dataset - Strategy 3/1-Core

Timeline

88 10s 188

Time | Heap | GC | Sparicstats | Spark sizes | Process info | Raw events |

I+

L«

Total ime: 185258
Mutator time: 8.672s
GC time: 9.852s

Productivity: 146 .8% of mutator vs total

Cat-In-Dat Dataset - Strategy 3/2-Core

I+]

L

Timeline
0s 1s 2s 3s ds 58 6s 7s 8s 9s 10s 11s 128 13s
1 1 1 1 1 |
Ay
HECQ
v e e - - P —__—_—
= r IEEN ONBNTTONERONND | T (O
I-_ L]
[[+]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
Total time: 14.074s
Mutator time: 7.045s
GC time: 7.029s
Productivity: 50.1% of mutator vs total

Cat-In-Dat Dataset - Strategy 3/4-Core

20

Timeline

I»]

0s 1s 2s 3s 4s 58 Bs 7s 8s 9s 108 11s 12s 13s 14s
1 1 1 1 I 1 1 1 1 | 1 1 1 1 1
Aesviny
HEGO
e —__| W
=3
v e w - —_—.....n
HEC2 ‘
17w 1 | m mm T _-m-“ M—Wm il
HEC3
o e - e -, —.....N
[=]]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
Total time: 15.218s
Mutator time: 9.063s
GC time: 6.1558
Productivity: [59.6% of mutator vs total

Cat-In-Dat Dataset - Strategy 3/8-Core

Timeline
0s 1s 2s 3s 48 58 6s 7s 8s 8s 10s 118 128 13s 14s 158 168 =
1 1 1 1 1 L 1 1 1 | 1 1 L 1 1 1 1
ey
HECD
N S W I I e NS RRRER W
HECT
N T | m m T A T M " II I
HEC2
W T n m m T L0 M |III II\HII\
HEC3
101 I n m m T L1 M I"I """ i
HEC4
LA I | n m m T MM M ” I II" " i
HECE
NI T | m m T Luiininl] M " "lll III\I\HII\
HECE
11l | n m L] T I | M\IHHI]
HECT
W n m m T L] M I| I ILH\II =
A
[2] [+
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
Total ime: 17.130s
Mutator time: 9.202s
GC time: EFE
Productivity: 53.7% of mutator vs total

Cat-In-Dat Dataset - Strategy 4,/1-Core

21

Timeline

0s

58
|

[o]

Tims | Hoap | GC | Spark stats | Spark sizes | Process infa | Raw events |

1+]

(Kl

Total time: 179115

Mutator time: 9.844s

GC time: 8.068s

Productivity: 55.0% of mutator vs total

Cat-In-Dat Dataset - Strategy 4/2-Core

Timeline |
0s 1s 2s 3s ds 58 6s 7s Bs 9s 10s s 12s 13s =
1 1 1 1 1 1 1 1 1 | 1 1 1 1
” |
= WO RO ORI R (W O W W
HEG1
LI U0 B | m Uil TN H_M-_.-HI-I-qI I\- |

[«

(]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
Total time: 14.569s

Ll

Mutator time: 6.767s
GC time: 7.802s
Productivity: 16.4% of mutator vs total

Cat-In-Dat Dataset - Strategy 4/4-Core

Timeline
0s 1s 2s 3s 45 53 6s 7s 8s 8s 10s 11s 128
. . . . 1 | . . .
Resiey
HEGO |
LI |l m m m _I -HJ H Im
HEC1

AR O SRR AN NS WRTE RN O OO
— . S
e O | 0

[«

I+]

(]
Tm|uaap|ec|5pammas|5pumum|hnmalme Aaw events

Ll

Total time: 13.728s|

Mutator time: 7.997s

GC time: 5.728s

Productivity: 58.3% of mutator vs total

Cat-In-Dat Dataset - Strategy 4/8-Core

22

Timeline

0s 1s 2s 3s 48 58 6s 7s 8s 8s 108 s 12s 13s 14s 158
L 1 1 1 1 1 1 1 L | 1 1 1 1 1 1
HEGO
U 1111 | u w m i L _I -mm
HEC1

1x]

1+]

B LR R R Im m m I
veca
L ETENT TS B Lm m m I -H-M-MIH“
s
B LR R 1m m m I -Mllll
vecs
LR R R m m m I WMF |F
wece
B LT R 1m m m I MMM
e
1LV RNT R B Im m m I -HM!FI\'II ;
I‘I IL‘
Time | Heap | GG | Spark stats | Spark sizes | Process info | Fiaw events
Totaltime: 16.9155
Mutator time: 8.056s
GG time: p.859s
Productivity: 47.6% of mutator vs total
Cat-In-Dat Dataset - Strategy 5/1-Core
Timeline
0s 58 10s 158
| 1 | 1 |
resy

(K1)

[51 [

Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events |

Total time: 20.156s
Mutator time: 8.362s
GCtime: [11.794s

Productivity: 41.5% of mutator vs total

Cat-In-Dat Dataset - Strategy 5/2-Core

Timeline
0s 1s 2s 3s ds 5s Bs s 8s 8s 10s 11s 12s 13s 14s
1 1 1 1 1 1 1 1 1 | 1 1 1 1 1
Acsity
I OO
HECH
W OROEON WWWOWON S
I [] nw m m (mm 1}

[ad
Tme | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

(I

Ll

Total time: 15.704s
Mutator time: 6.667s
GC time: p.037s

Productivity: 42.5% of mutator vs total

Cat-In-Dat Dataset - Strategy 5/4-Core

23

Timeline

0s 1s 2s 3s ds 5s 6s 7s 8s 9s 10s s 12s =
1 1 1 1 1 1 1 1 L | 1 1 1
Ay
HECQ | |
i 1 n o m L I W | | I :
- AONVAEAVARTTR VAR FAATORNR FRARANNCASATEY EASRENCRORTANEOONEAD - NURONVEATONMOADAVNURONVOOONNEY URMOVORIOMAPURATOMVOMOVIAL SONONANONIN CONOAVOOEY O RN
HEC2
T .. v . —
uEC3
T — _ - AL —_—

Ll

[o]
Time | Heap | GG | Spark stais | Spark sizes | Process info | Raw events

Total time: 13.306s

Mutator time: 7.302s

GC time: [B.004s

Productivity: 54.9% of mutator vs tolal

]

Cat-In-Dat Dataset - Strategy 5/8-Core

Timeline

1]

0s 1s 2s 3s 4s s [s 8s 9s 10s 11s 12s 13s 14s 158 16s

e . w . —....... .

4]
(KT |

(|
Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events
Totaltime: 17.488s
Mutator time: 10.023s
GC time: [7.466s
Productivity: 57.3% of mutator vs total

A-7 Handwritten Dataset - Strategy 1/1-Core

24

Timeline

I+l

Ll

(3]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time: 165.014s

Mutator ime: 149.596s

GC time: 15.418s

Productivity: 90.7% of mutator vs total

A-7Z Handwritten Dataset - Strategy 1/2-Core

Timeline

0s 508 1008
1] .

Ll

[«

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
Total time: ~ 149.951s

Mutator ime: 131.855s

GC time: 18.096s

Productivity: 87.9% of mutator vs total

A-7 Handwritten Dataset - Strategy 1/4-Core

Timeline

L+]

‘Us 50s 100s

F

8
-
-

,
i

3
8

Ll

Cl

Time: | Haap'GC |Spaﬂ<s'as|5paﬂ<slzas| Process info | Raw evenis
Totaltime: 139.722s

Mutator ime: 121.498s

GG time: 18.223s

Productivity: 87.0% of mutator vs total

Timeline

[-
-—
-

(3]

2]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

I+]

L

Total time:
Mutator time:
GC time:
Productivity:

130.484s

109.657s

20.827s

84.0% of mutator vs total

A-7 Handwritten Dataset - Strategy 2/1-Core

Timeline

0s 508

1508

(]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Iv]

Total time:
Mutator time:
GC time:
Productivity:

165.678s

148.017s

17 661s

89.3% of mutator vs total

A-7Z Handwritten Dataset - Strategy 2/2-Core

Timeline

[2]

Time | Heap | GC | Spark stats | Sparksizes | Pracess info | Raw events |

Total time:
Mutator time:
GC time:
Productivity:

153.116s

133.659s

19.457s

87.3% of muiator vs total

A-Z

Handwritten Dataset - Strategy 2/4-Core

26

Timeline

0s 108 20s 30s 408 508 60s

110s

1208

Iv]

[

S O O 00 00 U000 00 i
- R, A0 O OO O M) R O 0 O 10
- NN A O MO O 1O OO O 0O 0 0

Sl

(1]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total ime: 138.301s

Mutator time: 121.723s

GC time: 17.578s

Productivity: 87.4% of mutator vs total

i

A-7 Handwritten Dataset - Strategy 2/8-Core

Timeline

iNAl-NrAIAAT-AAAR-TAG TG EUARTINN ANA SATAANGNNISISIANK MIN A-7-MNIST AeY 2 — +RTR -N4 16 -6 AUANTINA [1RZ7437 AuANIS 130 AN14)

0s 10s 208 30s 405 50s 60s

80s

100s

110s

1+

[

0 0 0 N 0 N | 1) 0 O 1
X O 1 R OO0 1A 1) 0 O
.. OO 00 0
X 1 D N O) N |) 0 O
N O 0 N O N | B 10
.. W 0 O 0 A N O
" O O 00 B A 1

[+]

Time | Heap | GC | Spark stats | Spark sizes | Pracess info | Raw events |

Total ime: 127.696s5

Mutator time: 106.930s

GC time: 20.765s

Productivity: 83.7% of mutator vs total

A-Z Handwritten Dataset - Strategy 3/1-Core

27

Timeline

[&d

Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events |
Total ime: 164.345s

Mutator time: 147.993s

GC time: 16.352s

Productivity: 80.1% of mutator vs total

A-7 Handwritten Dataset - Strategy 3/2-Core

0s 5s 10s 18s 20s 25s 30s 3ss 40s 455 50s

55s 60s 785 80s

B5s 70s B5s
et b b bl b bl b e b e b e

- RO KT T R O 0T 0 R

[2]
Tme|HeaplGC'SpammB'Spamdm'Pmeminh'Rawmnb'
Total time: ~ 87.750s
Mutator time: 74.138s
GC time: 136125
Productivity: 84.5% of mutator vs total

A-7 Handwritten Dataset - Strategy 3/4-Core
Timeline

0s 58 108 158 20s 258 30s 358 408
M R B B I B N
hesiny

58 505 555 =
M P R B B

Time | Heap | GC | Spar stats | Spark sizes | Process info | Raw events |
Totalime: 60.864s

Mutator time: 48.927s

GC time: 11.837s

Productivity: 80.4% of mutator vs total

A-7 Handwritten Dataset - Strategy 3/8-Core

28

(K

Timeline

1+]

0s 5s 10s 158 20s 258 30s 358 408 458 50s

(K

i| weca

[o]
Tims | Hoap | GC | Spark stats | Spark sizes | Process infa | Raw events |

iK1]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw evens |
Totaltime: 55.846s
Mutator time: 41.090s
GC time: 14.8565
Productivity: 73.4% of mutator vs total
A-Z Handwritten Dataset - Strategy 4/1-Core
Timeline
0s 508 100s. 150s. 2l
| 1 1 . 1 I 1 . 1 1] . L 1 f 1 1
Ackvity

Total time: 164.593s

Mutator time: 146.963s

GC time: 17.630s

Productivity: 89.3% of mutator vs total

A-7Z Handwritten Dataset - Strategy 4/2-Core

Timeline

0s 58 108 158 20s 258 30s 358 408 458 508 558 60s 658 70s 758 80s 85s

0 N 0 O OO A
0N O N A O

1] |
Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events

[+]

K]

Total ime: 88.101s
Mutator time: 75.164s
GC time: 13.937s
Productivity: 84.4% of mutator vs total

A-7 Handwritten Dataset - Strategy 4/4-Core

29

Timeline

0s 58 10s 158 20s 258 30s 358 408 458 508 558 60s 658 =

AP IR PR I SR B R I B I S B SN N

Acsviy

|

= VAN OO O 0T 00 00O RO

= (R R AR O (R O T . A Y 1
T L |
1

= VN A 0 00O O ORI
1 n I
= (WO 0O TR0 OO0 OO O |
| I |

KT
Time | Heap | GG | Spar stats | Spark sizes | Process info | Raw events |

Totaltime: 67.403s
Mutator time: 56.115s.
GC time: 11.288s
Productivity: 83.3% of mutator vs total

A-7 Handwritten Dataset - Strategy 4/8-Core

Timeline

[
Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events |
Total ime: 55.040s
Mutator time: 42.918s

GC time: 12.122s
Productivity: 78.0% of mutator vs total

A-7Z Handwritten Dataset - Strategy 5/1-Core

30

Timeline

0s 80s 100s 150s
| 1 L . . . | . . L . 1 L
Acsity
HECQ
[]
Tm'Heap'GC'SpalkmB Spark sizes | Process info | Raw events
Total time: 163.5055
Mutator time: 147 6295

GC time: 15.876s
Productivity: 90.3% of mutator vs tolal

A-7Z Handwritten Dataset - Strategy 5/2-Core

Timeline
0s 58 10s 188 20s 258 30s 358 40s 455 50s 565 60s 655 70s 755 80s 855 =
N BT SRR T T BT ST T ST ST ST R ST i SR ST PN e
Aoty
= 1RO A Y A R R AT —
! L=
KT 1+
Time | Heap | GC | Spar stats | Spark sizes | Process info | Raw events |
Total time: 80.838s
Mutator time: 78.757s

GC time: 12.081s
Productivity: 86.7% of mutator vs total

A-7Z Handwritten Dataset - Strategy 5/4-Core

Timeline
0s 58 108 158 208 258 30s 358 408 458 508 558 60s =
vy vy ey vy by ey b ey by e ey
hesing
= VNN O 00 0O 0000 O
= (R R O R T A
I I u -
= VA O 0 A T R0 A I
I ! n -
= I 0 A 00 | —
I I [| =l
[31 |
Tmﬂ|Haap|63|5pam:1au|5pamsims|Pmeesulnh'ﬁawevams|
Total ime: 63.648s
Mutator time: 52.441s

GC time: 11.207s
Productivity: 82.4% of mutator vs total

A-7 Handwritten Dataset - Strategy 5/8-Core

31

Iv]

Timeline

0s 58 10s 158 20s 258 30s 358 408 458 —

[51

Time | Heap | GC | Spark stats | Spark sizes | Frocess info | Raw events |
Total time: 50.027s

Mutator time: 36.287s

GC time: 13.7408
Productivity: 72.5% of mutator vs total

32

	Introduction
	Sequential Implementation
	Data Structure
	Tree Construction
	Entropy Calculation
	Information Gain Calculation

	Proof of Concept
	Effect of Dataset on Algorithmic Runtime
	Parallelization Strategies
	Increasing Core Count
	Single-source parallelization
	Combined parallelization
	Combined + Miscellaneous row-based operations parallelization

	Discussion
	Conclusion
	Future Work
	References and Acknowledgements
	Code Listing
	Appendix and Notes

