
Parallelized Decision Tree Algorithm
(COMS 4995 - Parallel Functional Programming)

Fall 2021

Phan Anh Nguyen (pn2363) Azhaan Zahabee (az2641)

1 Introduction
Decision Trees are a class of supervised machine learning algorithms that are often used to solve both
regression and classification problems. At a high level, the Decision Tree algorithm takes in a set
of input data with corresponding labels, greedily builds a lookup-tree where data is grouped at each
level according to a ’best-feature’ to split the data on, and recursively applies this splitting down the
branches until a stop criterion is met. During test time, a new input is classified by following the
decision tree nodes until a leaf is reached. The predicted label is that associated with the leaf that the
input data ultimately lands on.

The choice of which feature to best split on is based on two concepts: Entropy and Information
Gain. Entropy for a set of data that is split on a feature that has c classes measures the degree of
’impurity’ associated with a set of data. It is defined as:

Entropy(Node) =

c∑
i=1

−pilog2(pi), pi = proportion of data with label i (1)

Information gain measures the expected reduction in entropy caused by partitioning the exam-
ples/data according to an attribute/feature. It is defined as:

Gain(Node,A) = Entropy(Node)−
∑
c∈A

| Nodec |
| Node |

Entropy(Nodec) (2)

From these two equations, we can identify the ’best attribute/feature’ to split our data on by selecting
the attribute that gives us the most information gain at any node.

For our implementation, we will be focusing on Decision Tree algorithms for classification problems
as regresison-based problems require extra pre-processing in the form of data discretization, which we
will not focus on in this project. The bottleneck with Decision Tree algorithms lies within the initial
building of the tree due to the potential exponential branching factor. The prediction process is trivial
as we simply follow the tree until we reach a leaf, going through branches based on what our new data
point is. As such, we will only be focusing on implementing and optimizing the tree-building algorithm.

In our report, we discuss several parallelization strategies that were attempted, and discuss the af-
fects that different datasets can have on the runtime and speed up achieved. We were able to achieve
anywhere between 1.3x and 16x speedup for our decision tree algorithm.

2 Sequential Implementation
For our project, we referenced a sequential decision tree algorithm implemented by Cortland Walker
as the starting point with which to modify and parallelize.

1

2.1 Data Structure
Label and Feature of the DataSet are stored as strings. Each row of the DataSet comprises of a list of
strings (features) and a label. To store the final constructed decision tree, we created a data structure
DTree that keeps record of the feature used at each node used for branching as well as the list of
children trees.

type Label = String
type Feature = String
type Entropy = Double
type DataSet = [([String], Label)]

data DTree = DTree { feature :: String, children :: [DTree] }
| Node String String deriving Show

2.2 Tree Construction
In this part, we begin with the root feature to construct the decision tree. The dataTrees function
helps in splitting up the dataset by the attributes that contributes the highest information gain. This
function returns a map of key value pairs, where key corresponds to each class of the selected feature
based on highest information gain and value corresponds to all other feature values except the selected
feature. Then foldrWithKey proceeds with the construction of child trees based on the new information
from dataTrees function.

dtree :: String -> DataSet -> DTree
dtree f d

| allEqual (labels strat d) = Node f $ head (labels strat d)
| otherwise = DTree f $ M.foldrWithKey (\k a b -> b ++ [dtree k a]) [] (datatrees d)

datatrees :: DataSet -> M.Map String DataSet
datatrees d = foldl (\m (x,n) -> M.insertWith (++) (x!!i) [((x `dropAt` i), fst (cs!!n))] m)

M.empty (zip (samples d) [0..])
where

i = highestInformationGain d
dropAt xs i = let (a,b) = splitAt i xs in a ++ drop 1 b
cs = zip (labels d) [0..]

2.3 Entropy Calculation
This is a simple function where the entropy calculation is done based on the formula provided in the
introduction section. The input is the list of labels corresponding to a particular class of a feature.
Later, in the report we have tried to parallelize this calculation of entropy.

entropy :: (Eq a) => [a] -> Entropy
entropy xs = sum $ map (\x -> prob x * into x) $ nub xs

where
prob x = (length' (elemIndices x xs)) / (length' xs)
into x = negate $ logBase 2 (prob x)
length' xs = fromIntegral $ length xs

2.4 Information Gain Calculation
The function defined here handles the core functionality of the algorithm. From the given DataSet we
construct the list attr that contains pair of (class, label) for each feature in the highestInformationGain

2

function. This list is used to calculate information gain value by selecting each feature separately and
the highest information gain value is returned as a result.

In the informationGain function, we make use of helper function splitAttr to split the attr list into
separate lists having labels corresponding to a particular class of a feature. Then this list is used to
calculate the entropy and resultant information gain value.

informationGain :: [Label] -> [(Feature, Label)] -> Double
informationGain s a = entropy s - newInformation

where
eMap = splitEntropy $ splitAttr a
m = splitAttr a
toDouble x = read x :: Double
ratio x y = (fromIntegral x) / (fromIntegral y)
sumE = M.map (\x -> (fromIntegral.length) x / (fromIntegral.length) s) m
newInformation = M.foldWithKey (\k a b -> b + a*(eMap!k)) 0 sumE

-- Determine which attribute contributes the highest information gain
highestInformationGain :: DataSet -> Int
highestInformationGain d = snd $ maximum $ zip (map ((informationGain . labels) d) attrs) [0..]

where
attrs = map (attr d) [0..s-1]
attr d n = map (\(xs,x) -> (xs!!n,x)) d
s = (length . fst . head) d

3 Proof of Concept
We show the correctness of this sequential algorithm by comparing the output of the sequential pro-
gram to mathematically deduced results that we expect a correct decision tree to output. We use the
toy example provided from Cortland Walker’s repository that builds the classifier using 14 data points,
with 4 features each contain between 2-3 possible classes. The labels in this data is binary, i.e., either
Yes or No.

3

Below is the output of the sequential algorithm ran on our toy example:

DTree {feature= "root", children = [
DTree {feature="Sunny", children=[

Node "Normal" "Yes",
Node "High""No"]},

DTree {feature="Rain", children=[
Node "Weak" "Yes",
Node "Strong" "No"]},

Node "Overcast" "Yes"]}

We first calculate the feature used for splitting at the "root" level:

Entropy(root) = − 5
14 (log2

5
14)−

9
14 (log2

9
14) = 0.940

Gain(Root, Feature”Sunny”, ”Rain”, ”Overcast”)
= Entropy(”Root”)− [Entropy(”Sunny”) + Entropy(”Rain”) + Entropy(”Overcast”)]
= 0.94− (5

14 (−
3
5 (log2

3
5)−

2
5 (log2

2
5)))− (5

14 (−
3
5 (log2

3
5)−

2
5 (log2

2
5)))− (4

14 (−1(log21)− 0))
= 0.246

Gain(Root, Feature”Hot”, ”Cool”, ”Mild”)
= Entropy(”Root”)− [Entropy(”Hot”) + Entropy(”Cool”) + Entropy(”Mild”)]
= 0.94− (4

14 (−
2
4 (log2

2
4)−

2
4 (log2

2
4)))− (6

14 (−
2
6 (log2

2
6)−

4
6 (log2

4
6)))− (4

14 (−
3
4 (log2

3
4)−

1
4 (log2

1
1))))

= 0.0289

Gain(Root, Feature”Weak”, ”Strong”)
= Entropy(”Root”)− [Entropy(”Weak”) + Entropy(”Strong”)]
= 0.94− (7

14 (−
4
7 (log2

4
7)−

3
7 (log2

3
7)))− (7

14 (−
1
7 (log2

1
7)−

6
7 (log2

6
7))))

= 0.152

Based on this, we would choose to split the root by the feature whose classes are "Sunny","Rain","Overcast".
This is inline with what the algorithm predicts.

We perform the same calculations on the next level for each of the "Sunny", "Rain" and "Over-
cast" nodes. We see that for the "Sunny" node, we obtain the highest gain by splitting the feature
whose classes are "High","Normal". For the "Rain" node, highest gain is obtained by splitting on the
"Weak","Strong" feature. We notice that next level nodes are pure so we stop there. For the "Over-
cast" node, we realize that the node is pure as all rows have a label of "Yes" so no further splitting is
needed and we stop there.

Thus, we see that our algorithm has produced the correct decision tree.

4 Effect of Dataset on Algorithmic Runtime
The size and depth of a decision tree, and therefore algorithm runtime, is highly influenced by the
underlying dataset being used. At each node, we choose the highest features to split the dataset and
continue to build the tree until the leaf nodes are pure or all features have been used. Since no feature
is re-used in the implementation of this algorithm, the number of features thus creates an upper bound
on the depth of the tree.

Furthermore, the number of children (branching factor) that is created after we decide on a fea-
ture to split by is also dependent on the number of possible classes that exist for that feature in the
dataset. For a binary feature, there are only two children, whereas a multi-class feature could generate
up to hundreds or thousands of children. Since we have to go through every data point to calculate

4

the entropy at each node, the runtime for the algorithm would be: O(nbd + k), where n is the number
of data points, b is the average branching factor, d is the depth of the final decision tree and k is the
remaining time spent on I/O or reading in of data.

By Amdahl’s Law, the theoretical maximum speedup is dependent on the proportion of work that
is parallelizable. Depending on the dataset, the proportion of time spent on building the tree versus
reading in the data can thus affect the degree of speedup. In our report, we test our strategies with
2 different datasets to explore how changes in feature number and number of classes within a feature
affect speedup gain from parallelization.

The first dataset is the "Cat in the Dat II" dataset from Kaggle, which contains 300,000 training
samples with 17 features. Each feature may have up to 5 different classes and there are 2 possible Y
labels to be predicted.

The second dataset is a subset of the "A-Z MNIST Letter Recognition: dataset. This is a letter-
classification dataset with roughly 25,000 data points. The training data consists of 28x28 images that
have been vectorized to obtain 784 features for each datapoint, which each feature having potentially
256 different classes that correspond to a pixel RGB value between 0-255. There are 26 possible y
labels for each datapoint which correspond to each letter of the alphabet.

5 Parallelization Strategies
We have identified several potential sources of parallelization that can be done:

1. Multi-core parallelization: We can try to increase the number of cores accessible by Haskell in
running the program. In our report, we attempt to use up to 8 cores to run both sequential and
parallelized versions of the algorithm. We expect to see minor to no speed-ups in the sequential
version. For the parallelized algorithm, we expect to see speed-up to scale acccordingly as we
increase core count until a maximum whereby any increased performance gain from more cores
will be outweighed by increased overhead costs.

2. Entropy parallelization: The sequential implementation of the Entropy calculation for a node
maps the entropy equation over each possible class that the label can have. For a multi-label
dataset, we could potentially parallelize the entropy calculation for each class. Since the entropy
equation solely depends on values in a current class, as well as the number of datapoints that
have a specific class within a feature, we can potentially parallelize this process.

3. Information Gain parallelization: The sequential implementation of the Highest Information
Gain calculation for a node maps over each possible attribute that we could split on and chooses
the attribute that results in the highest gain. Since the information gain calculations self-
contained within the columns (i.e: does not depend on information gain results from other
columns), we can also potentially parallelize this process.

4. Miscellaneous row-based operations parallelization: Lastly, the sequential implementation
has several helper functions that map on the row/datapoint level such as the ’samples’ or the
’labels’ function. These functions are used deeper within the entropy/information gain function
call and potentially provide a more granular level of parallelization in addition to the two main
sources of parallelization previously described.

Based on the above sources of parallelization, we define 4 potential parallelization strategies that
can be applied to our 2 datasets:

5.1 Increasing Core Count
With this strategy, we simply increase the number of cores/Haskell Execution Contexts (HECs) used.
There is no change to the underlying decision tree algorithm. This strategy serves as a baseline to
determine efficacy of other parallelization strategies with 1, 2, 4 and 8 core.

5

Cat in the Dat II Dataset

Fig 1. Sequential Algorithm/1-Core, Cat-in-the-dat dataset

A-Z Handwritten Dataset

Fig 2. Sequential Algorithm/1-Core, A-Z handwritten dataset

5.2 Single-source parallelization
With this strategy, in addition to using multiple cores, we attempted to obtain performance gains
by either parallelizing the Entropy calculation OR Information Gain. This serves to determine which
source of parallelization results in more performance gains.

Entropy is parallelized by implementing the following code snippet:

entropy :: (Eq a) => String -> [a] -> Entropy
entropy strat xs | strat `elem` ["2","4","5"] = sum $ parMap rseq (\x -> prob x * into x) $ nub xs

| otherwise = sum $ map (\x -> prob x * into x) $ nub xs
where

prob x = (length' (elemIndices x xs))/(length' xs)
into x = negate $ logBase 2 (prob x)
length' xs = fromIntegral $ length xs

6

Information Gain is parallelized by implementing the following code snippet:

highestInformationGain :: String -> DataSet -> Int
highestInformationGain strat d = snd $ maximum $ infoGains

where
infoGains

| strat `elem` ["3", "4", "5"] = zip (parMap rseq (((informationGain strat)
. (classes strat)) d) attrs) [0..]

| otherwise = zip (map (((informationGain strat) . (classes strat)) d) attrs) [0..]
attrs = map (attr d) [0..s-1]
attr d n = map (\(xs,x) -> (xs!!n,x)) d
s = (length . fst . head) d

Entropy - Cat in the Dat II Dataset

Fig 3. Entropy Parallelization/8-Core, Cat-in-the-dat dataset

7

Entropy - A-Z Handwritten Dataset

Fig 4. Entropy Parallelization/8-Core, A-Z Handwritten dataset

Information Gain - Cat in the Dat II Dataset

Fig 5. Information Gain Parallelization/8-Core, Cat-in-the-dat dataset

8

Information Gain - A-Z Handwritten Dataset

Fig 6. Information Gain Parallelization/8-Core, A-Z Handwritten dataset

5.3 Combined parallelization
It seeks to combine parallelization from both Entropy and Information Gain to maximize performance.

Combined - Cat in the Dat II Dataset

Fig 7. Combined Parallelization/8-Core, Cat-in-the-dat dataset

9

Combined - A-Z Handwritten Dataset

Fig 8. Combined Parallelization/8-Core, A-Z Handwritten dataset

5.4 Combined + Miscellaneous row-based operations parallelization
This strategy seeks to combine parallelization from both Entropy and Information Gain to maximize
performance gains as well as attempts to leverage more granular parallelization in the form of down-
stream row-based operations such as ’samples’ and ’labels’ functions.

’Samples’ function is parallelized by implementing the following code snippet:

samples :: String -> DataSet -> [[String]]
samples strat sdata | strat == "5" = withStrategy (parBuffer 100 rdeepseq) (map fst sdata)

| otherwise = map fst sdata

’Labels’ function is parallelized by implementing the following code snippet:

labels :: String -> DataSet -> [Class]
labels strat sdata | strat == "5" = withStrategy (parBuffer 100 rdeepseq) (map snd sdata)

| otherwise = map snd sdata

10

Combined + Misc - Cat in the Dat II Dataset

Fig 9. Combined + Misc Parallelization/8-Core, Cat-in-the-dat dataset

Combined + Misc - A-Z Handwritten Dataset

Fig 10. Combined + Misc Parallelization/8-Core, A-Z Handwritten dataset

11

6 Discussion
We first look at the use of multiple cores for the sequential algorithm. Looking at the threadscope
event log for both datasets, we see that most of the work is still completed by only one core. This
suggests that the initial algorithm is highly sequential and was implemented in a way such that the
system is unable to utilize parallelism even if we throw more cores at the program. As such, there is
almost no improvement in runtimes as seen in Fig.11, and Fig.12.

Overall Performance - Cat in the Dat II Dataset

Fig 11. Overall Performance of Strategies across cores, Cat in the Dat II dataset

Overall Performance - A-Z Handwritten Dataset

Fig 12. Overall Performance of Strategies across cores, A-Z Handwritten dataset

12

We only start to notice multiple cores being used by the program once parallelized Entropy and
Information Gain calculations are implemented. Looking at graphs of Fig.3, Fig.4, Fig.5, and
Fig.6, we see multiple cores being used which suggests that parallelization is working.

To calculate the theoretical speedup limit for each dataset, we need to look at what proportion of
total work is parallelizable. We noticed that for all parallel strategies implemented, there is always a
fixed ∼11 -12 seconds of sequential work being done. Given that paralellism is implemented relatively
early on in the actual building of the Decision Tree, we suspect that this sequential portion is due
to I/O from reading in the input data. Since we are using the external ’Text’ library for this part of
the algorithm, we did not implement parallelism here. This seemed to be the only sequential portion.
Since the sequential version of the ’Cat in the Dat’ dataset takes ∼17.3 seconds and that of the ’A-
Z Handwritten’ dataset takes ∼165 seconds, we estimate potential theoretical maximum speedup of
∼1.5x for the ’Cat in the Dat’ dataset and ∼14x for the ’A-Z Handwritten’ dataset.

In reality, the maximum speedup we achieved for the ’Cat in the Dat’ dataset at was close to ex-
pected at ∼1.3x, while far from expected for the ’A-Z Handwritten’ dataset at ∼3.3x. For the ’A-Z
Handwritten’ dataset, we suspect that additional performance gains may be obtained by increasing the
number of cores used as shown in Fig.12. However, notice that we do see a tapering off of performance
gains from these figures which suggests that the additional overhead from increasing core count will
negate any additional performance gains as we reach a certain core count. Hence, it seems like there
can be improvements made to our implementation of paralellization. We discuss an additional source
of parallelization that can be implemented as future work in the Conclusion section.

Next, we wanted to compare the different sources of parallelization and see how much they con-
tribute to the overall performance gain. Firstly, we look at parallelizing Entropy. For the ’Cat in
the Dat’ dataset, we see only minor gains (∼1.04x) from parallelizing Entropy with 2 cores. With 4
and 8 cores, we actually obtain worse performance than the sequential counterpart. Since there are
only 2 possible classes to parallelize for each Entropy calculation, we suspect that the higher overhead
associated with scheduling parallelization did not result in any significant improvement. The situation
is only slightly improved when we look at the ’A-Z Handwritten’ dataset with 26 possible classes. The
maximum speedup obtained was (∼1.3x). This seems to suggest that parallelizing Entropy may not
have a significant affect on performance. However, we realize that these results are only preliminary. In
practice, it is not uncommon for datasets to have much more than 26 possible labels. Several Natural
Language Processing tasks such as Named Entity Recognition or Next-word Prediction may have up
to several million possible Y labels. A possible improvement on this work would be to test this strategy
against such datasets. Unfortunately, due to time and resources constraints, we were unable to find
and test such a dataset while completing our project.

Parallelizing Information Gain seems to tell a different story, however. With the ’Cat in the Dat’
dataset, we were able to obtain a ∼1.24x speedup, compared to the ∼1.5x theoretical maximum.
With the ’A-Z handwritten’ dataset, we were able to obtain a ∼2.95x speedup, which is significantly
better than the gains obtained from parallizing Entropy.

Overall, the best strategy for both datasets seemed to be Strategy 5. With the ’Cat in the Dat’
dataset, we were able to obtain a ∼1.3x speedup, while the ’A-Z Handwritten’ dataset obtained
∼3.3x. In this strategy, we apply all sources of parallelization from both Entropy and Information
Gain, as well as parallelized row-based operations such as the ’samples’ and ’labels’ function which
extract the features and labels from a data row respectively. We notice that the optimal number of
cores varies between dataset. For the the ’Cat in the Dat’ dataset, we seem to reach optimal cores
much earlier on at 4 cores (Fig.11), while with the ’A-Z Handwritten’ dataset, it seems that we are
still obtaining performance gains as we approach 8 cores (Fig.12). This suggests that in practice,
exact number of cores to provide will need some fine-tuning of hyperparameters.

13

7 Conclusion
Overall, we see that the Decision Tree algorithm is a highly parallelizable algortihm as we were able to
obtain up to ∼3.3x speedup through parallelization of Entropy, Information Gain, Row-based
operations, as well as increasing the number of cores provided to the program. We also determined
that the exact degree of speedup, as well as how much each source of parallelization contributes to the
overall performance gain is dependent on the underlying data being used.

8 Future Work
Throughout our experiements, we have noted that the data input process was mostly sequential
throughout all strategies implemented. Given further resources, we would like to potentially explore
ways to parallelize this process in the future. This is an important consideration as for specific datasets,
reading in the data constitutes the majority of the work being done, and therefore, sets a limit of the
degree of parallelization by Amdahl’s law.

Lastly, we would like to point out another source of parallelization that could have been implemented.
We realized that since different feature branches do not rely on each other for any calculations, it is
theoretically possible to parallelize the recursive creation of branches in a Decision Tree. The sequen-
tial algorithm, however, uses the ’M.foldrwithkey’ function to achieve this, which we have found is not
easily parallelizable. As such, if we were to re-implement this algorithm from scratch, we will try to
design the tree-building functions with parallelization in mind.

9 References and Acknowledgements
We would like to thank Professor Edwards and the TAs for your guidance throughout the semester!

In completion of our report, we have consulted the following references:

• Sequential Decision Tree Classifier implementation, Cortland Walker,
Github: https://github.com/Cortlandd/Haskell-Data-Tree-Classifier

• Dataset 1: https://www.kaggle.com/c/cat-in-the-dat-ii/overview

• Dataset 2: https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format

• Intelligence, A Modern Approach (Fourth Edition), Stuart Russel, Peter Norvig

• Parallel and Concurrent Programming in Haskell, Simon Marlow

• COMS 4995 - Parallel Functional Programming Lecture Notes

• COMS 4701 - Artificial Intelligence Lecture Notes

• https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

10 Code Listing

module Main where

import Data.List(nub, elemIndices)
import qualified Data.Map as M
import Text.CSV
import Control.Parallel.Strategies
import System.Exit(exitFailure)
import System.Environment(getArgs)

14

https://github.com/Cortlandd/Haskell-Data-Tree-Classifier
https://www.kaggle.com/c/cat-in-the-dat-ii/overview
https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

-- Better type synonyms for better understanding
-- of what data is being passed around.
type Class = String
type Feature = String
type Entropy = Double
type DataSet = [([String], Class)]

-- Define a data structure for a decision tree that'll be constructed
data DTree = DTree { feature :: String, children :: [DTree] }

| Node String String deriving Show

main :: IO ()
main = do

args <- getArgs
[filename, strat] <- case args of

[f, s] -> return [f, s]
_ -> do

error "Usage: stack run <filename> <strat> -- +RTS -N<numHEC> -ls -s"
exitFailure

strategy <- case strat of
x | x `elem` ["1", "2", "3", "4", "5"] -> do return strat
_ -> do

error "Usage: Valid strat options are: <1> - Sequential, <2> - Single-Choice (Entropy),
<3> - Single-Choice (InformationGain), <4> - Both (w/o Misc.), <5> - Both (with Misc)"
exitFailure

rawCSV <- parseCSVFromFile ("src/" ++ filename)
either handleError doWork rawCSV strategy

handleError = error "invalid file"

-- IF file is read successfully
-- THEN remove any invalid CSV records and construct a decision tree out of it
doWork :: CSV -> String -> IO ()
doWork fcsv strat = do

let removeInvalids = filter (\x -> length x > 1)
-- #1
let myData = map (\x -> (init x, last x)) $ removeInvalids fcsv
let result = dtree strat "root" myData
let firstNodeChildren = length b

where DTree a b = result
print "Final Decision Tree:"
print result

-- Helper functions to break up the DataSEt tuple into
-- a list of samples or list of classes.
-- #2
samples :: String -> DataSet -> [[String]]
samples strat sdata | strat == "5" = parMap rseq fst sdata

| otherwise = map fst sdata

-- #3
classes :: String -> DataSet -> [Class]
classes strat sdata | strat == "5" = parMap rseq snd sdata

| otherwise = map snd sdata

-- Calculate the entropy of a list of values
-- #4
entropy :: (Eq a) => String -> [a] -> Entropy
entropy strat xs | strat `elem` ["2","4","5"] = sum $ parMap rseq (\x -> prob x * into x) $ nub xs

15

| otherwise = sum $ map (\x -> prob x * into x) $ nub xs
where

prob x = (length' (elemIndices x xs))/(length' xs)
into x = negate $ logBase 2 (prob x)
length' xs = fromIntegral $ length xs

-- Split an attribute by its features
splitAttr :: [(Feature, Class)] -> M.Map Feature [Class]
splitAttr dc = foldl (\m (f,c) -> M.insertWith (++) f [c] m) M.empty dc

-- Obtain each of the entropies from splitting up an attribute by its features.
splitEntropy :: String -> M.Map Feature [Class] -> M.Map Feature Entropy
splitEntropy strat m = M.map (entropy strat) m

-- Compute the information gained from splitting up
-- an attribute by its features
informationGain :: String -> [Class] -> [(Feature, Class)] -> Double
informationGain strat s a = entropy strat s - newInformation

where
eMap = splitEntropy strat $ splitAttr a
m = splitAttr a
toDouble x = read x :: Double
ratio x y = (fromIntegral x) / (fromIntegral y)
sumE = M.map (\x -> (fromIntegral.length) x / (fromIntegral.length) s) m
newInformation = M.foldrWithKey (\k a b -> b + a*(eMap M.! k)) 0 sumE

-- Determine which attribute contributes the highest information gain
-- #5
highestInformationGain :: String -> DataSet -> Int
highestInformationGain strat d = snd $ maximum $ infoGains

where
infoGains

| strat `elem` ["3", "4", "5"] =
zip (parMap rseq (((informationGain strat) . (classes strat)) d) attrs) [0..]

| otherwise = zip (map (((informationGain strat) . (classes strat)) d) attrs) [0..]
attrs = map (attr d) [0..s-1]
attr d n = map (\(xs,x) -> (xs!!n,x)) d
s = (length . fst . head) d

-- Split up the dataset by the attributes that contributes the highest
-- information gain
datatrees :: String -> DataSet -> M.Map String DataSet
datatrees strat d = foldl (\m (x,n) -> M.insertWith (++) (x!!i) [((x `dropAt` i), fst (cs!!n))] m)

M.empty (zip (samples strat d) [0..])
where

i = highestInformationGain strat d
dropAt xs i = let (a,b) = splitAt i xs in a ++ drop 1 b
cs = zip (classes strat d) [0..]

-- A helper function to determine if all elements of a list are equal.
-- Used to check fi further splitting of a dataset is necessary by checking
-- if its classes are identical.
allEqual :: Eq a => [a] -> Bool
allEqual [] = True
allEqual [_] = True
allEqual (x:xs) = x == (head xs) && allEqual xs

-- Construct the decision tree from a labeling and a dataset of samples

16

dtree :: String -> String -> DataSet -> DTree
dtree strat f d

| allEqual (classes strat d) = Node f $ head (classes strat d)
| otherwise = DTree f $ M.foldrWithKey (\k a b -> b ++ [dtree strat k a]) [] (datatrees strat d)

11 Appendix and Notes
Our code can be ran by first unpacking the zip file. Following that, we can run:

cd final-project
stack build
stack run <input-filename> <strategy> -- +RTS -N<Num. cores> -ls -s

An example run would be:

stack run a-z-mnist.csv 3 -- +RTS -N4 -ls -s

Raw Eventlog Graphs

Cat-In-Dat Dataset - Strategy 1/1-Core

Cat-In-Dat Dataset - Strategy 1/2-Core

17

Cat-In-Dat Dataset - Strategy 1/4-Core

Cat-In-Dat Dataset - Strategy 1/8-Core

Cat-In-Dat Dataset - Strategy 2/1-Core

18

Cat-In-Dat Dataset - Strategy 2/2-Core

Cat-In-Dat Dataset - Strategy 2/4-Core

Cat-In-Dat Dataset - Strategy 2/8-Core

19

Cat-In-Dat Dataset - Strategy 3/1-Core

Cat-In-Dat Dataset - Strategy 3/2-Core

Cat-In-Dat Dataset - Strategy 3/4-Core

20

Cat-In-Dat Dataset - Strategy 3/8-Core

Cat-In-Dat Dataset - Strategy 4/1-Core

21

Cat-In-Dat Dataset - Strategy 4/2-Core

Cat-In-Dat Dataset - Strategy 4/4-Core

Cat-In-Dat Dataset - Strategy 4/8-Core

22

Cat-In-Dat Dataset - Strategy 5/1-Core

Cat-In-Dat Dataset - Strategy 5/2-Core

Cat-In-Dat Dataset - Strategy 5/4-Core

23

Cat-In-Dat Dataset - Strategy 5/8-Core

A-Z Handwritten Dataset - Strategy 1/1-Core

24

A-Z Handwritten Dataset - Strategy 1/2-Core

A-Z Handwritten Dataset - Strategy 1/4-Core

A-Z Handwritten Dataset - Strategy 1/8-Core

25

A-Z Handwritten Dataset - Strategy 2/1-Core

A-Z Handwritten Dataset - Strategy 2/2-Core

A-Z Handwritten Dataset - Strategy 2/4-Core

26

A-Z Handwritten Dataset - Strategy 2/8-Core

A-Z Handwritten Dataset - Strategy 3/1-Core

27

A-Z Handwritten Dataset - Strategy 3/2-Core

A-Z Handwritten Dataset - Strategy 3/4-Core

A-Z Handwritten Dataset - Strategy 3/8-Core

28

A-Z Handwritten Dataset - Strategy 4/1-Core

A-Z Handwritten Dataset - Strategy 4/2-Core

A-Z Handwritten Dataset - Strategy 4/4-Core

29

A-Z Handwritten Dataset - Strategy 4/8-Core

A-Z Handwritten Dataset - Strategy 5/1-Core

30

A-Z Handwritten Dataset - Strategy 5/2-Core

A-Z Handwritten Dataset - Strategy 5/4-Core

A-Z Handwritten Dataset - Strategy 5/8-Core

31

32

	Introduction
	Sequential Implementation
	Data Structure
	Tree Construction
	Entropy Calculation
	Information Gain Calculation

	Proof of Concept
	Effect of Dataset on Algorithmic Runtime
	Parallelization Strategies
	Increasing Core Count
	Single-source parallelization
	Combined parallelization
	Combined + Miscellaneous row-based operations parallelization

	Discussion
	Conclusion
	Future Work
	References and Acknowledgements
	Code Listing
	Appendix and Notes

