
COMS 4995 Parallel Functional Programming
Burrows-Wheeler transform

David Winograd (dmw2181), Zulal Ozyer (zo2146)

December 22, 2021

1. Introduction

The aim of this project is to compare Haskell's sequential programming performance to its

parallel programming performance. We used Burrows-Wheeler transform algorithm to compare

the two programming performances.

2. Burrows-Wheeler Transform

Burrows-Wheeler transform takes a character string (either a word or sentence) and alters it to

make it easier for compression. There are many applications of the BTW algorithm, such as in

the field of biology, when dealing with lettered genome sequences (A, C, T, G). The general idea

consists of constructing a list in which the rows are all rearranged systematically, typically in

“dictionary order”. Once elements in the list are clustered together, they are ordered in such a

way that the string itself becomes more compressible due to similar letters being close to one

another.

3. Implementation

a. Sequential Implementation

There are 3 steps to perform Burrows-Wheeler Transform on a string:

1. In the first step, we form all the cyclic rotations of a given string. If we use a sample

word such as “tree”, the rotations would consist of “tree$”, “$tree”, “e$tre”, “ee$tr”, and

“ree$t”.

2. In the second step, we order the formed rotations lexicographically. In our example, this

would be sorted as “$tree”, “e$tre”, “ee$tr”, “ree$t”, “tree$”, so our last column would be

“eert$”.

3. The last step is outputting the last column of the strings. We do this because the last

column will have the best clustering of symbols when compared to all of the other

columns. Also, with this BWT output, the remaining rotations of the original word can be

recovered. None of the other columns have this unique characteristic.

We applied step 1, step 2 and step 3 for all the strings in a given text and constructed a list from

the output of step 3.

b. Parallel Implementation

We tried two approaches for the parallel implementation. In the first approach, we first divide the

given text into two. Then we performed the 3 steps from sequential implementation on each of

the strings of two separated chunks of the text. We used two rpar and two rseq functions to apply

3 steps simultaneously. However, the first approach did not work as it was not executed in a fully

parallel manner. In the second approach, we used parListChunk to run the functions on separate

chunks of words. We tried many numbers to find the optimal chunks for the parListChunk

function. We used 6 cores because our computer’s processor has 6 intel cores.

4. Results

a. Sequential Performance

i. Using Threadscope, we were able to run our program sequentially with a

total time of 1.266 seconds. This varies depending on the number of words

in our sample text file, but we will be using a file with roughly 100,000

words across the board. Towards the end of the threadscope performance,

there is some time accounted for printing out the result, which takes

roughly half the time as the computation, given that 100,000 words are

printed out.

ii.

b. Parallel Performance

i. For the first approach, although we could get the parallel implementation

run faster than the sequential implementation, the execution itself was not

fully parallel, and therefore, was not a valid result.

ii.

iii. For the second approach, we were able to run our program with a total

time of approximately 0.817 seconds. There is also some garbage

collection time taking place in the initial stages of the performance, which

appears to be standard practice and cannot be removed. Below is the

figure for a chunk size of 5000.

iv.

v. With this new approach, we had to try various chunk sizes to see which

was the most optimal for performance and efficiency. Below is the parallel

implementation with a chunk size of 100.

vi. Below is the parallel implementation with a chunk size of 3000.

vii.

5. Conclusion

a. All in all, this was a very rewarding and educational project. There were several

challenges and lessons learned. Challenges included determining which

parallelization function is most suitable (Rseq vs Rpar vs parList vs

parListChunk) and customizing the chunk number to find optimal performance.

Since our code was not too incredibly complicated, the benefits of parallelization

were not always obvious, which is why we needed to include a very long text file

of 100,000 words to see the results. In addition, we learned a lot about parallelism

of algorithms, string compression in Haskell, and building Haskell projects from

scratch, including programs like Stack, Cabal, and Threadscope.

6. References

a. https://www.geeksforgeeks.org/burrows-wheeler-data-transform-algorithm/

7. Code

a. Sequential Implementation

b. Parallel Implementation

