COMS 4995 Parallel Functional Programming
Burrows-Wheeler transform

David Winograd (dmw2181), Zulal Ozyer (z02146)

December 22, 2021

1. Introduction
The aim of this project is to compare Haskell's sequential programming performance to its
parallel programming performance. We used Burrows-Wheeler transform algorithm to compare

the two programming performances.

2. Burrows-Wheeler Transform
Burrows-Wheeler transform takes a character string (either a word or sentence) and alters it to
make it easier for compression. There are many applications of the BTW algorithm, such as in
the field of biology, when dealing with lettered genome sequences (A, C, T, G). The general idea
consists of constructing a list in which the rows are all rearranged systematically, typically in
“dictionary order”. Once elements in the list are clustered together, they are ordered in such a
way that the string itself becomes more compressible due to similar letters being close to one

another.

3. Implementation
a. Sequential Implementation

There are 3 steps to perform Burrows-Wheeler Transform on a string:

1. In the first step, we form all the cyclic rotations of a given string. If we use a sample
word such as “tree”, the rotations would consist of “tree$”, “$tree”, “e$tre”, “ee$tr”, and
“ree$t”.

2. In the second step, we order the formed rotations lexicographically. In our example, this
would be sorted as “$tree”, “e$tre”, “ee$tr”, “ree$t”, “tree$”, so our last column would be
“eert$”.

3. The last step is outputting the last column of the strings. We do this because the last
column will have the best clustering of symbols when compared to all of the other
columns. Also, with this BWT output, the remaining rotations of the original word can be
recovered. None of the other columns have this unique characteristic.

We applied step 1, step 2 and step 3 for all the strings in a given text and constructed a list from

the output of step 3.

b. Parallel Implementation
We tried two approaches for the parallel implementation. In the first approach, we first divide the
given text into two. Then we performed the 3 steps from sequential implementation on each of
the strings of two separated chunks of the text. We used two rpar and two rseq functions to apply
3 steps simultaneously. However, the first approach did not work as it was not executed in a fully
parallel manner. In the second approach, we used parListChunk to run the functions on separate
chunks of words. We tried many numbers to find the optimal chunks for the parListChunk

function. We used 6 cores because our computer’s processor has 6 intel cores.

4. Results

a. Sequential Performance
1. Using Threadscope, we were able to run our program sequentially with a
total time of 1.266 seconds. This varies depending on the number of words
in our sample text file, but we will be using a file with roughly 100,000
words across the board. Towards the end of the threadscope performance,
there is some time accounted for printing out the result, which takes
roughly half the time as the computation, given that 100,000 words are

printed out.

/Users/davidwinograc loads/haskellHWFiles/finalProject/seq_bwt.eventlog - ThreadScope

File View Move Help

Elkas Qaa

Key | Traces | | Timeline

m—running os 0.1s 02s 03s 0.4s 05s 06s 07s o08s 0.9s 1s 118
— GC . 1 1 L 1

GC waiting Actity

| create thread
seq GC req
par GC req
migrate thread

thread wakeup HECO

|
!
| i 1 O D T
| shudown L L e R
[usermesenge
| pertcounter [" |
| perftracepoint i 1
create spark HEC2
| ol P |
| all dudspark 1 11]
lal -]
| adl runspark Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |
| ol fizzled spark Total time: 1.266s.
Mutator time: 1.172s
| all ecedspark GClime: 94.303ms

Productivity: 92.5% of mutator vs total

[T —
11. [Sersidaviawinograd/Downloadshaskel TesAMnalProjectseq bwieventlog (57617 ovents, 1.2665)

b. Parallel Performance
1. For the first approach, although we could get the parallel implementation
run faster than the sequential implementation, the execution itself was not

fully parallel, and therefore, was not a valid result.

il.

iil.

1v.

V.

/Users/davidwinograd/Downloads/haskellHWFiles/my-project/my-project-exe.eventlog - ThreadScope

File View Move Help

Bllkeisllaaq

Key | Traces | | Timeline

N running 0s 50ms 0.1s. 0.15s 0.2s 0.25s 0.3s. 0.35s 0.4s. 0.45s 0.5s. 0.55s 0.6s 0.65s. 0.7s |

G P I AN N EPAAIS BN AU SRl AAFUIrS AN IV I B
GC waiting iy

| create thread
seq GC req
par GC req
migrae tread IOV gy . -w - v -
thread wakeup || weco

. WO AR AUNER D OO NN 00 00 I Y O

user message

perf counter . | | |
perftracepoint : !
| all create spark Hec2 ‘
| ol dudspark f [I
| all overfiowed spark|]
| adl runspark e
| ol fizzled spark .
| ol GCedspark =
I
Hecs

"] !
[« >
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total ime: ~ 722.914ms
Mutator time: 547.481ms
GC time: 175.433ms
Productivity: 75.7% of mutator vs total

For the second approach, we were able to run our program with a total
time of approximately 0.817 seconds. There is also some garbage
collection time taking place in the initial stages of the performance, which
appears to be standard practice and cannot be removed. Below is the

figure for a chunk size of 5000.

ventlog - ThreadScope

File View Move Help
Bllrsllqaa

Key | Traces | Bookmarks | Timeline

m—running 05 soms 0fs 015s 025 025 035 03s 04s 0455 055 0S5 06s 065 07 0755 08
— e I A IR AT SO IV IS VAT IO ISl AR IS I I IO A I

GC waiting Aoy
| create thread

56q GC req

i el A o8l M00h sehbden
' ~
| migrate thread
| thread wakeup Heco ---- -
| shudown HMII!IIH-__H‘ H_Fl ..F .
| usermessage |

] wect
I pertoouner "l.. IIIF IJ-—I‘ !!I- —II
: i 15 il i | I I
| perfracepoint
| all create spark Hecz | N | | |
[l o ANEEIEN W | W IS E—
|l S ———
| un spark Time | Heap | GC | Spark sats | Spark sizes | Process info | Raw events |
| fizzled spark Total time: ~ B17.209ms
Mutator time: 443.605ms
| L GCedspark GCtime: 373.604ms
Productivty: 54.3% of mutator vs total
bl

sersidaviawnograd/DownloadsaskelHWF Tesimy-projecmy-project-exe eventiog (52535 events, 0 8175

With this new approach, we had to try various chunk sizes to see which

was the most optimal for performance and efficiency. Below is the parallel

implementation with a chunk size of 100.

File View Move Help

BllkfRslaaq

Key [Traces | | Tmeline

N running 0s 0.1s. 0.2s 0.3s 0.4s 0.5s. 0.6s 0.7s 0.8s I
. GC L L L L 1 L L L 1

GC waiting setviy
| create thread
seq GC req

par GC req — — . — -

migrate thread

thread wakeup || reco

LT
R 0 e 0

user message

L L L .
1 | l 1 | (IR

perf tracepoint

all
o LU R B L

| all overfiowed spark||

ok e LI A A

IA fizzled spark
| UL AL Ry
I :

[>
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total ime: ~ 956.766ms.
Mutator ime: 433.664ms
GC time: 523.102ms
Productivity: 45.3% of mutator vs total

[—" 1]
[[sersiaaviawinogradlDownloadshaskeWE Tesimy-projecimy-project-exe eventiog (29862 events, 0.9575)

vi. Below is the parallel implementation with a chunk size of 3000.

File View Move Help

Blkrisllaaa

Key | Traces | Bookmarks | Timeline
M running 0s 0.5s 1s
= cC 1 |

GC waiting sty

D]

| create thread

seq GCreq

parcrea ahna b ol somelm JASSS

migrate thread

thread wakeup HECO
A e (. i —

user message
rect
— o iy LT D S— '
) - ! th 1] 1w AR (T
perf tracepoint
| all create spark Hec2

|_J dud spark INIIII Ll ll- 1 M\Mulnmn H!—M\HHM\I_!\ [I " L] I

| all overflowed spark [4

Lk e} (W P! P 1) L1111

I! IR 1 (O]
| fizzled spark

|A - - |HIIII IIIIHII ll!- 1 IJ'I\l |!|HA\HM—HLHHH|\M| IJJ | I | e I |
5 IHIMI L I 'lmh—ml W HIIH- q 1l i L] I | ;

K1) 0]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Totaltime: 1574s

Mutator time: 964.136ms

GCtime: 610.215ms
Productivity: 61.2% of mutator vs total

. >

[E—
VI11. Sersidaviawinograd/Downloadsiaskel lesimy-projectimy-project-oxe eventiog (41516 events, 1.5745)

5. Conclusion

a. All in all, this was a very rewarding and educational project. There were several
challenges and lessons learned. Challenges included determining which
parallelization function is most suitable (Rseq vs Rpar vs parList vs
parListChunk) and customizing the chunk number to find optimal performance.
Since our code was not too incredibly complicated, the benefits of parallelization
were not always obvious, which is why we needed to include a very long text file
of 100,000 words to see the results. In addition, we learned a lot about parallelism
of algorithms, string compression in Haskell, and building Haskell projects from

scratch, including programs like Stack, Cabal, and Threadscope.

6. References

a. https://www.geeksforgeeks.org/burrows-wheeler-data-transform-algorithm/

7. Code

a. Sequential Implementation

System.Environment (getArgs, getProgName)
System.IO()

System.Exit(die)

Data.Char (toLower)

Data.List

main I0 ()
main
args getArgs
args
[filename]
contents readFile filename
lwords cleaningWords contents

print (buildFinallist lwords)

pn getProgName
die § "Usage: " ++ pn ++ " <filename>"

cleaningWords String [String]
cleaningWords s words (map toLower s)

buildFinallList [String] [String]
buildFinallist [] [1
buildFinalList (x:xs) [getFinalColumn (sortOn (map tolower) (createAllRotations (length x) x))] ++ (buildFinalList xs)

createAllRotations Int String [String]

createAllRotations 0 [1

createAllRotations n word [w] ++ (createAllRotations (n-1) w)
w rotateWord word

getFinalColumn [String] String
getFinalColumn [] [1
getFinalColumn (x:Xs) [last x] ++ (getFinalColumn xs)

rotateWord [Char] [Char]
rotateWord word take len $ drop (negate 1 “mod” len) $ cycle word
len length word

b. Parallel Implementation

Users > davidwinograd » Downloads > haskellHWFiles > my-project > app > Main.hs
I Main

Lib

System.Environment(getArgs, getProgName)
System.IO0()

System.Exit(die)

Data.Char(toLower)

Data.List

Data.Maybe

Control.Parallel.Strategies

main :: ()
main = do
args <- getArgs
case args of
[filename] -> do
contents <- readFile filename
lwords = cleaningwWords contents
solutions = buildFinalList lwords ‘using® parListChunk 5000 rseq
print (solutions)

_ =>do
pn <- getProgName
die $ "Usage: " ++ pn ++ " <filename>"

cleaningWords :: == [1
cleaningWords s = words (map tolLower s)

buildFinallList :: 1 =1
buildFinallList =
buildFinallList (x:xs) = [getFinalColumn (sortOn (map toLower)} (createAllRotations (length x) x))] ++ (buildFinallList xs)

createAllRotations ::

createAllRotations @ _ =

createAllRotations n word = [w] ++ (createAllRotations (n-1) w)
w = rotateWord word

getFinalColumn :: [1 -
getFinalColumn =
getFinalColumn (x:xs) = [last x] ++ (getFinalColumn xs)

rotateWord :: [1> 1 1
rotateWord word = take len $ drop (negate 1 “mod” len) $ cycle word
len = length word

