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1 Introduction

The Boolean Satisfiability Problem involves determining whether variables of a given
Boolean formula can be replaced using True or False in a way that satisfies the Boolean
formula, i.e. leads the Boolean formula to evaluate to True. If the Boolean evaluates to
true, it is SAT (otherwise, UNSAT). SAT is NP-Complete, making it one of the interesting
problems in theoretical computer science.

For this project, I sought to explore existing SAT-solving algorithms and find ways
to parallelize them in Haskell, then compare the performance of sequential approaches
against the parallel one. There are several algorithms which use different heuristics. I
mainly focused on the DPLL algorithm.

2 DPLL Algorithm

The DPLL (Davis-Putnam-Logemann-Loveland) Algorithm makes use of backtracking
search, unit propagation, literal elimination, and recursive checks on different variable
assignments to determine boolean satisfiability.

2.1 Unit Propagation

This is a step to simplify the provided CNF-SAT problem at every iteration. It involves
searching for a unit clause and (1) removing instances of other clauses that contain the
literal in the unit clause and (2) removing instances of the literal’s complement from other
clauses in the formula. This works since the problem is in Conjunctive Normal Form, so
if a literal value is assigned to True, all the clauses that contain that literal value will
automatically evaluate to True, and the literal’s complement adds no meaning to the
formula. Unit propagation reduces the search space significantly.

2.2 Literal Elimination

This is the removal of literals that do not contain any complements in the set of clauses
provided. Such literals are usually called pure literals. They are eliminated from all
the clauses since they can be assigned to True without having effect on the eventual
satisfiability result of the formula.



2.3 Determining SAT or UNSAT

The DPLL Algorithm runs an exhaustive search on all possible assignments of variables,
using unit propagation and literal elimination (discussed above) to reduce search space
on different iterations. While doing the exhaustive search, the algorithm gives partial
assignments to variables and determines whether taking that path will lead to satisfiability,
backtracking if it does not.

A CNF formula is determined to be SAT if the variables are assigned without a clause
in the CNF formula becoming empty. A CNF formula is determined to be UNSAT if the
opposite happens, that is, if the assignment of variables leads to one of the clauses being
empty.

2.4 DPLL Pseudocode

This is the DPLL pseudocode, adapted from here, with steps for unit-propagation and
literal elimination as discussed above:

Algorithm 1 DPLL Pseudocode

procedure DPLL: Input = CNF Formula, Output = True of False
If Formula is a consistent set of literals, return True
If Formula is a constains and emptey clause, return False
For every unit clause u in the Formula:

Formula ← unit-propagate w.r.t. u
For every pure literal p in the Formula:

Formula ← simplify w.r.t. p
u ← choose a literal from Formula
return DPLL (Formula AND u) or DPLL (Formula AND NOT u)

3 Implementation of DPLL in Haskell

3.1 CNF Files

A CNF file represents literals as numeric values. Negative numerals represent comple-
ments, for instance the complement of 1 is −1. Each line in the file represents one clause,
and each of the lines end with a 0, which is a special value and is not treated as a literal.
As expected, since it is in Conjunctive Normal Form, literals in the lines are OR-ed, while
clauses across the file are AND-ed.

CNF files for testing the sequential and parallel DPLL are easily available online.
Haskell has a DIMACS CNF parser library that converts the CNF formulas into a 2-
dimensional Unboxed Array. I processed the clauses into a list of lists, i.e. a list of
clauses.

3.2 Sequential Implementation

There are several sequential solvers easily available, including such as which uses a Min-
iSAT Solver available on Hackage. However, for the purpose of this project, I focused
mainly on parallelizing a sequential approach that closely follows the DPLL characteris-
tics discussed in Section 2 above.

https://en.wikipedia.org/wiki/DPLL_algorithm
https://hackage.haskell.org/package/parse-dimacs
https://hackage.haskell.org/package/minisat
https://hackage.haskell.org/package/minisat


3.3 Parallel Implementation

By studying the DPLL algorithm, we learn that the sequential approach builds up a
tree-like structure for the solution space. I think that the last step is the one is especially
important: a literal is chosen from the remaining clauses, and the algorithm branches into
two children, with each branch assigned to a different polarity of the literal. Therefore,
this part of the DPLL algorithm lends itself neatly to parallelization.

Initially, I had tried introducing parallelism to some of the subroutines in DPLL,
such as unit propagation, literal elimination, or simplification of clauses. However, I
concluded that these steps were not very interesting since they would not significantly
narrow down the time it takes to cover the whole solution space. Unit Propagation and
literal elimination, for instance, could have been parallelized using a ParList since I parse
the boolean formulas into list of lists. However, I think that parallelizing tree structure
was more interesting since it would significantly affect the speed at which the solution
space is explored.

Below is the Haskell pseudocode for the parallelized section of the DPLL algorithm:

1 State = {[ clauses] , [variable assignments ]}

2 parDPLL: depth State

3 | if formula is empty = return [assignments]

4 | otherwise = do

5 lit <- chooseLiteral formula

6 let positive = parDPLL (i-1) (State simplified w.r.t lit)

7 (vars with lit added)

8 let negative = parDPLL (i-1) (State simplified w.r.t -lit)

9 (vars with -lit added)

10

11 if depth > 0 then

12 runEval $ do

13 x <- rpar falseBranch

14 return (case trueBranch of

15 Nothing -> x

16 Just result -> return result)

17 else

18 case trueBranch of

19 Nothing -> falseBranch

20 Just result -> return result

21

22 where

23 formula = updated clauses after unitpropagation s’

24 vars = updated list of variables assignments

State holds the formula and a list of variable assignments. The formula is the CNF-
SAT problem presented as a list of lists, where the nested lists are clauses. The formula
is created by parsing a .cnf file provided as a command-line argument.

True and False are assigned to a literal obtained by chooseLiteral, and branched
into two paths: trueBranch and falseBranch. This is the step that continues in parallel.
The rpar in this case does not need an accompanying rseq since it evaluates fully by
the time is opposite branch returns i.e. we have to check whether positivePath returns
a result or Nothing first. Here is the rpar section of the algorithm which is and Eval
computation performed by runEval:

1 x <- rpar falseBranch

2 return (case trueBranch of

3 Nothing -> x



4 Just result -> return result)

The results of the parallel algorithm against the sequential one are analyzed in more
details in the next section.

4 Evaluation

4.1 Datasets used for testing

I mostly worked with problems that have been determined to be unsatisfiable in order to
ensure that the algorithms explore the maximum search space rather than race to find
the solution. Therefore, the solution space for Unsatisfiable boolean formulas provides a
better heuristic for measuring the performance of parallelism.

The files are downloadable from the SATLIB Benchmark Problems site .

4.2 Results

Below is the threadscope diagram for a parallel DPLL running on 2 cores.

I used several cnf files to test the sequential and parallel algorithms, but the results
below are from one Unsatisfiable formula. The sequential algorithm took an average of
36.549 seconds over 5 runs.

These are the results from the parallel algorithm
Depth = 8, with -N2 on a 4-thread i5 computer:

Parallel Algorithm Data: depth = 8

Depth Total
Sparks

Converted
Sparks

GC’ed
Sparks

Fizzled
Sparks

Elapsed
Time

Speedup on
Sequential
Time

1 1 1 0 0 18.13s 1.96
2 3 1 0 2 18.77s 1.97
4 3 1 0 2 18.57s 1.98
8 255 1 0 254 18.20s 1.96
16 65535 2 122 65411 18.06s 1.96
32 4194355 6 3989850 204499 18.19s 1.96

Depth = 8, with -N4 on a 4-thread i5 computer:

Parallel Algorithm Data: depth = 8

Depth Total
Sparks

Converted
Sparks

GC’ed
Sparks

Fizzled
Sparks

Elapsed
Time

Speedup on
Sequential
Time

1 1 1 0 0 22.15 1.65
2 3 3 0 0 16.88s 2.16
4 15 5 0 10 16.80s 2.17
8 255 5 0 250 16.87s 2.17
16 65535 18 126 65391 17.29s 2.11
32 4194539 73 3982895 211571 17.03s 2.15

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html


The results above show that parallelism on a Dual-COre Intel Core i5 Macbook. Using
-N2 and -N4 arguments did not make much of a difference in runtime when compared to
the sequential program. The comparison ratios between sequential runtime and parallel
runtime (on both -N2 and -N4) were consistent on all the CNF Formulas.

Figure 1 below shows the eventlog diagrams obtained using threadscope using -N2
argument, with a parallelism depth of 8. The workloads on the two cores look balanced
and consistent, ending at the same time. Evenlog diagrams with similar arguments (depth
and number of cores) were the same as Figure 1, therefore load balancing was consistent
across all the sample problems I tried.

Figure 1: Eventlog for parallel DPLL: depth = 8, -N2

Figure 2 below shows the eventlog diagrams with -N4 argument and depth 8.

Figure 2: Eventlog for parallel DPLL: depth = 8, -N4



5 Lessons Learned

5.1 Parallelized DPLL is Faster

The parallel version of the algorithm was consistently about 2 times faster than the
sequential version on all the CNF Formulas that I tested on. This is demonstrated by
the table under section 4.2. The table below shows the sequential and parallel runtimes
on several datasets from the SATLIB Benchmark Problems. I used parallelism depth of
8 and 2 cores (-N2) for the parallel algorithm. The Formulas with suffix pret are from
Graph-Coloring Problems, and the ones with suffix hole are Pigeon-Hole Problems.

Comparison Between Parallel and Sequential Runtimes

CNF Formula Sequential
Runtime

Parallel Time
(depth 8)

pret60 25.cnf 38.574s 17.797
pret60 40.cnf 40.591s 16.884s
pret60 60.cnf 39.680s 16.85s
hole7.cnf 4.144s 1.988s
hole8.cnf 106.588s 50.30s

5.2 Unsatisfiable CNF Problems Cause A Lot of Fizzling

There was a significant difference on the ratio of sparks converted versus sparks fizzled
between Satisfiable CNF Formulas and Usatisfiable CNF Formulas. As seen in section 4.2,
testing on Unsatisfiable CNF Problems result in a lot of sparks getting fizzled especially
at depth 8 and beyond. On the other hand, Satisfiable problems consistently resulted in
more Converted Sparks than Fizzled Sparks up to depth 10.

According to Marlow (in the class text book), fizzled sparks are caused when the
“expression was unevaluated at the time it was sparked but was later evaluated indepen-
dently by the program.” This may have occurred more in Unsatisfiable CNF Problems
since parallel search on the solution space may have resulted in a branch realizing that
it has finished doing the work that is still sparked for a separate branch, leading to the
other work getting fizzled.

I think this is a part of the parallel algorithm that I can improve in the future.

5.3 More Cores Would Likely Increase Speedup Even More

Increasing the depth did not result in a reciprocal increase in speedup that I had expected.
I ran the programs on a Dual-Core Intel Core i5 computer, which does not offer processor
power to take significant advantage of Haskell parallelism’s potential. I think that more
cores would result in incremental speedup (up to some point) as the depth is increased.

My attempts to run on a virtual machine with more power were not successful (yet).



6 Code Listing

6.1 Lib.hs

1 module Lib

2 (readCNF

3 ) where

4

5 import Data.Array.Unboxed

6 import Language.CNF.Parse.ParseDIMACS as DIMACS

7

8 readCNF :: FilePath -> IO (Either [Char] [[ Integer ]])

9 readCNF filename = do

10 cnfFile <- DIMACS.parseFile filename

11 case cnfFile of

12 Left _ -> return $ Left "Error loading CNF file"

13 Right cnfUarray -> return $ Right $ createFormula cnfUarray

14

15 createFormula :: CNF -> [[ Integer ]]

16 createFormula cnfUarray = map (map (toInteger) . elems) $ clauses

cnfUarray

6.2 BoolSat.hs

1 {-# LANGUAGE BangPatterns #-}

2 {--

3

4 ref:

5 https :// stackoverflow.com/questions /12547160/ how -does -the -dpll -algorithm -

work

6 https ://en.wikipedia.org/wiki/DPLL_algorithm

7 https :// gist.github.com/adrianlshaw /1807739

8 https ://www.cs.cmu.edu /~15414/ f17/lectures /10-dpll.pdf

9 --}

10

11 module BoolSat where

12

13 import Data.Maybe

14 import Control.Parallel.Strategies

15

16 type Literal = Integer

17 type Clause = [Literal]

18 type Formula = [Clause]

19 type Record = [Literal]

20

21 {-

22 SolverState holds the formula and the record. The formula is the CNF -SAT

23 problem which is modified as different literals are assigned. The record

24 holds the assignments that are ’true ’

25 -}

26 data SolverState = SolverState {formula :: !Formula

27 , record :: !Record

28 } deriving (Show)

29

30 {-Sequential DPLL algorithm that uses unitpropagation and backtracking -}

31 seqDpll :: SolverState -> Maybe Record

32 seqDpll s

33 | null cnf = return rec

34 | otherwise = do



35 l <- chooseLiteral cnf

36 case seqDpll (SolverState (eliminateLiteral cnf l) (l:rec)) of

37 Just res -> return res

38 Nothing -> seqDpll $ SolverState (eliminateLiteral cnf (-l)) ((-l):

rec)

39 where

40 state ’ = unitpropagate s

41 cnf = formula state ’

42 rec = record state ’

43

44 {-

45 [DEPRECATED ]: first try: parallelize dpll.

46 -}

47 trial_dpllPar :: (Ord a, Num a) => a -> SolverState -> Maybe Record

48 trial_dpllPar _ (SolverState [] rec) = Just rec

49 trial_dpllPar i s

50 | null cnf = return rec

51 | otherwise = do

52 case getUnit cnf of

53 Just u -> trial_dpllPar i $ SolverState (eliminateLiteral cnf u) (u:

rec)

54 Nothing ->

55 let

56 dlit = unwrapMaybe $ chooseLiteral cnf

57 trueBranch = trial_dpllPar (i-1)

58 (SolverState (eliminateLiteral cnf dlit) (dlit:rec)

)

59 falseBranch = trial_dpllPar (i-1)

60 (SolverState (eliminateLiteral cnf (-dlit)) ((-dlit

):rec))

61 in if i > 0 then

62 runEval $ do

63 x <- rpar falseBranch

64 return (case trueBranch of

65 Nothing -> x

66 Just r -> return r)

67 else

68 case trueBranch of

69 Nothing -> falseBranch

70 Just r -> return r

71 where

72 state ’ = unitpropagate s

73 cnf = formula state ’

74 rec = record state ’

75

76 {-

77 Parallel DPLL that does not have any depth. It parallelizes the dpll on

the branching part

78 i.e. the last line of the dpll pseudocode. Computes the falseBranch in

par with the true one.

79 -}

80 parDpll :: SolverState -> Maybe Record

81 parDpll s

82 | null cnf = return rec

83 | otherwise = do

84 l <- chooseLiteral cnf

85 let trueBranch = parDpll (SolverState (eliminateLiteral cnf l) (l:

rec))

86 let falseBranch = parDpll (SolverState (eliminateLiteral cnf (-l))

((-l):rec))

87 runEval $ do



88 x <- rpar falseBranch

89 return (case trueBranch of

90 Nothing -> x

91 Just r -> return r)

92

93 where

94 state ’ = unitpropagate s

95 cnf = formula state ’

96 rec = record state ’

97

98 ---------------------------------

99 {-

100 Parallel DPLL that has a depth param. It parallelizes the dpll on the

branching part

101 i.e. the last line of the dpll pseudocode. Computes the falseBranch in

par with the true one.

102 -}

103 parDpll3 :: (Ord t, Num t) => t -> SolverState -> Maybe Record

104 parDpll3 i s

105 | null cnf = return rec

106 | otherwise = do

107 l <- chooseLiteral cnf

108 let trueBranch = parDpll3 (i-1) (SolverState (eliminateLiteral cnf l

) (l:rec))

109 let falseBranch = parDpll3 (i-1) (SolverState (eliminateLiteral cnf

(-l)) ((-l):rec))

110 if i > 0 then

111 runEval $ do

112 x <- rpar falseBranch

113 return (case trueBranch of

114 Nothing -> x

115 Just r -> return r)

116 else

117 case trueBranch of

118 Nothing -> falseBranch

119 Just r -> return r

120

121 where

122 state ’ = unitpropagate s

123 cnf = formula state ’

124 rec = record state ’

125 -------------------------------------

126

127 {-More info on unit propagation in the project report -}

128 unitpropagate :: SolverState -> SolverState

129 unitpropagate (SolverState cnf rec) =

130 case getUnit cnf of

131 Nothing -> SolverState cnf rec

132 Just u -> unitpropagate $ SolverState (eliminateLiteral cnf u) (u:rec)

133

134 {-Checks for a literal in the formula and returns it (or Nothing otherwise

)-}

135 chooseLiteral :: Formula -> Maybe Literal

136 chooseLiteral cnf = listToMaybe . concat $ cnf

137

138 {-

139 Checks for a clause with only one literal and returns the literal , other

-

140 wise it returns Nothing

141 -}

142 getUnit :: Formula -> Maybe Literal



143 getUnit xs = listToMaybe [x | [x] <- xs]

144

145 {-

146 This does what was described under the section of unit propagation in

the

147 report. That is, given a literal a to be simplified with , it: " (1)

removes

148 instances of other clauses that contain the literal and (2) removes

149 instances of the literal ’s complement in other clauses.

150 Proof: (a OR _) = a, (a OR (NOT a)) = a

151 -}

152 eliminateLiteral :: Formula -> Literal -> Formula

153 eliminateLiteral cnf l = [simplClause x l | x <- cnf , not (elem l x)]

154 where

155 simplClause c lit = filter (/= -lit) c

156

157 {-solver for sequential; takes cnf formula as input , together with empty

list

158 that will hold the output -}

159 seqDpllSolve :: [[ Integer ]] -> Maybe [Integer]

160 seqDpllSolve = seqDpll . flip SolverState []

161

162 {-solvers for parallel; takes cnf formula as input , together with empty

list

163 that will hold the output -}

164 parDpllTrialSolve :: (Ord a, Num a) => a -> [[ Integer ]] -> Maybe [Integer]

165 parDpllTrialSolve i = trial_dpllPar i . flip SolverState []

166

167 parDpllSolve :: [[ Integer ]] -> Maybe [Integer]

168 parDpllSolve = parDpll . flip SolverState []

169

170

171 parDpllSolve3 :: (Ord a, Num a) => a -> [[ Integer ]] -> Maybe [Integer]

172 parDpllSolve3 i = parDpll3 i . flip SolverState []

173

174 {-obtaining the value in the Maybe type -}

175 unwrapMaybe :: Maybe a -> a

176 unwrapMaybe (Just n) = n

177 unwrapMaybe Nothing = error $ "Nothing is returned here"

6.3 Main.hs

1 module Main where

2

3 import Lib

4 import BoolSat

5 import Control.Monad

6 import System.Environment(getArgs)

7 import System.Exit(die)

8

9 {--

10 Main is set up for 3 types of tests:

11 --}

12

13 -- >>> 1: tests a parallel dpll that has no max

14 -- parallelization depth

15

16 -- main = do

17 -- args <- getArgs



18 -- case args of

19 -- [filename] -> do

20 -- cnfFormula <- readCNF filename

21 -- case cnfFormula of

22 -- Left e -> putStrLn e

23 -- Right formula -> putStrLn $
24 -- show $
25 -- parDpllSolve formula

26 -- _ -> putStrLn "Usage: stack run <cnf file >"

27

28

29 -- >>> 2: tests a parallel dpll that has a max

30 -- parallelization depth

31

32 main = do

33 args <- getArgs

34 case args of

35 [filename , depth] -> do

36 cnfFormula <- readCNF filename

37 let d = read $ depth

38 case cnfFormula of

39 Left e -> putStrLn e

40 Right formula -> putStrLn $
41 show $
42 parDpllSolve3 d formula

43 _ -> putStrLn "Usage: stack run <cnf file > <depth of parallelism >"

44

45 -- >>> 3: tests a sequential dpll

46

47 -- main = do

48 -- args <- getArgs

49 -- case args of

50 -- [filename] -> do

51 -- cnfFormula <- readCNF filename

52 -- case cnfFormula of

53 -- Left e -> putStrLn e

54 -- Right formula -> putStrLn $
55 -- show $
56 -- seqDpllSolve formula

57 -- _ -> putStrLn "Usage: ./ sequential <cnf file >"

7 References

Parallel and Concurrent Programming in Haskell by Simon Marlow
Haskell Dimacs CNF parser library on Hackage
DPLL explanation here: http://www.diag.uniroma1.it// liberato/ar/dpll/dpll.html
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