
PFP Project Report: Autocomplete

Michael Jan (mj2886), Maÿlis Whetsel (mw3391)

Fall 2021

1 Introduction

Our task is as follows: Given an unfinished word in context, predict the remainder of the word. The best
prediction will depend on the given characters of the current word as well as the previous words. For example,
given the input “I love functional prog”, our program’s output might be “programming”.

Because autocomplete is typically useful only in real time, making the algorithm run fast is of utmost
importance, which is why we decided to parallelize it.

Our program is split into two parts (essentially two different programs): BuildKnowledgeBase and Auto-
Correct. The former takes a raw English corpus and turns it into n-grams. The latter uses the n-grams to
perform autocomplete.

2 BuildKnowledgeBase

BuildKnowledgeBase (BKB) takes a corpus (large file of English text) and converts it into n-gram frequencies.
These frequencies are then used by AutoComplete to automatically complete sentences.

In particular, the BKB program does the following:

1. Read the corpus into memory

2. Break it into sentences

3. Preprocess (make lowercase, keep only alphanumeric characters, etc.) and tokenize the sentences

4. Generate n-grams for n = 1, 2, 3.

5. Count the frequency of each n-gram

6. Write the n-gram frequencies to text files. 1-gram frequencies (single word frequencies) are stored in
1.txt, 2-gram frequencies are stored in 2.txt, and so on.

2.1 Sequential

Below is the sequential implementation, and Figure 1 shows its Threadscope output. We tested the program
on a corpus of 40000 words (5 megabytes) on a 2018 Macbook Pro with an i7 6-core processor and 16 GB
of RAM. From the Threadscope output, we found that the execution took 13.78 seconds and used only one
core (which is expected since this is the sequential implementation).

isStringNumber :: String -> Bool

isStringNumber = foldr ((&&) . isNumber) False

getFreqs :: (Ord a) => [a] -> [(a, Int)]

getFreqs xs = M.toList (M.fromListWith (+) [(x, 1) | x <- xs])

processSentence :: String -> [String]

1

Figure 1: Threadscope output for sequential implementation.

processSentence sentence = toks'''

where

-- split into words

toks = splitOneOf " .,;:!?()[]{}<>-/\"\\\n" sentence

-- make lowercase and keep only letters and numbers

toks' = map (map toLower . filter (\c -> isLetter c || isNumber c)) toks

-- convert each number to "[NUM]"

toks'' = map (\t -> if isStringNumber t then "[NUM]" else t) toks'

-- remove empty strings

toks''' = filter (not . null) toks''

getNGrams :: Int -> [String] -> [[String]]

getNGrams n toks = filter (\ts -> length ts == n) \$ map (take n) . tails $ toks

getNGramFreqs:: Int -> [[String]] -> [([String], Int)]

getNGramFreqs n sentences = getFreqs \$ concatMap (getNGrams n) sentences

writeNGramFreqs :: [([String], Int)] -> String -> IO ()

writeNGramFreqs freqs filename = writeFile filename \$ unlines lines

where

lines = map (\(ts, c) -> show c ++ " " ++ unwords ts) freqs

buildKnowledgeBase :: String -> String -> IO ()

buildKnowledgeBase inputFile outputDir = do

input <- readFile inputFile

2

Figure 2: Threadscope output for BKB parallel strategy 1.

let sentences = splitOneOf ".?!" input

sentences' = map processSentence sentences

sentences'' = map (take 200) \$ chunksOf 200 sentences'

ngram_freqs n = concat (

map (getNGramFreqs n) sentences'' `using` parList rdeepseq)

freqs = map ngram_freqs [1..3]

mapM_ (\(n, f) -> writeNGramFreqs f (outputDir ++ "/" ++ show n ++ ".txt")) \$

zip [1..] freqs

2.2 Parallel Strategy 1

Our first attempt at parallelization was to generate 1-grams, 2-grams, and 3-grams concurrently. To accom-
plish this, we changed the following line of our main BKB function following to:

freqs = map (`getNGramFreqs` sentences') [1..3] `using` parList rdeepseq

We achieved a 1.2x performance boost, which is not much. Furthermore, the Threadscope output in Figure
?? indicates that a maximum of three cores were used at a time. This was expected because our intent was
to have one core generate 1-grams, another core generate 2-grams, and yet another core generate 3-grams.

2.3 Parallel Strategy 2

We then tried to preprocess each sentence correctly, which gave a 1.7x speedup. To this end, we modified
another line of code:

sentences' = map processSentence sentences `using` parListChunk 16 rdeepseq

3

Figure 3: Threadscope output for BKB parallel strategy 2.

4

Figure 4: Threadscope output for BKB parallel strategy 3.

The Threadscope output (given in Figure 3) differs from the previous version in that for the first half-second,
all cores are being used. This indicates that the sentence preprocessing took only a small fraction of the
total running time, which we suspect is why this parallelization attempt did not speed our program up by
much. Note also that we used parListChunks instead of parList because processing a single sentence takes
so little time (and there are so many sentences) that it would be unreasonable to generate one spark per
sentence.

2.4 Parallel Strategy 3

Our final attempt at parallelizing BKB was much more successful. From Strategy 2, we found that the
sentence preprocessing was not the bottleneck—so the bottleneck had to be the n-gram generation. Strategy
1 parallelized this portion of our program but did so naively so that only a maximum of 3 cores were used
at a time.

This time, we broke the sentences into batches and generated n-grams from them in parallel. As you can
see from the Threadscope output in Figure 4, this led to all cores being used and a speedup of 5.7x, which
is near the theoretical limit.

To accomplish this, we modified the main BKB function as follows:

sentences' = map processSentence sentences

sentences'' = map (take 200) \$ chunksOf 200 sentences'

ngram_freqs n = concat (

map (getNGramFreqs n) sentences'' `using` parList rdeepseq)

freqs = map ngram_freqs [1..3]

5

Figure 5: Test results on a corpus of 250k words.

2.5 Further testing

For completeness, we tested our final parallelized implementation on a larger corpus (250k words, 35 mb).
On the same (6-core) machine, we varied the number of threads from 1 to 20, and the running time is
graphed in Figure 5. As shown, the best speedup was 3x, using 5 threads. As we continued adding threads
(to the point where there were many more threads than available physical cores), performance decreased,
most likely due to the added overhead of context switching.

3 AutoComplete

AutoComplete (AC) takes a folder containing N-gram files (generated by BKB) and an input.txt file con-
taining the unfinished word (in-context). It will the output the most likely word to finish the sentence based
on word N-gram frequency.

In particular the AC program does the following:

1. Read the 1-grams (word frequency) into a Trie

2. Read the 2 and 3-grams into a map (gram to frequency)

3. Extract the prefix (word to complete), the second to last word (start of the 2-gram), and two second
to last words (start of the 3-gram)

4. Run a lookup on the Trie to get all valid words completing the prefix

5. Generate 2-grams and 3-grams with each of the valid completing words and get the associated score
by looking them up in their respective map

6. Combine 1,2,3-grams to get (word, score) pairs – we ended up only using the 2 and 3-grams scores
since otherwise nonsensical but super common words overpower all other possibilities

6

7. Traverse the scores list and print the word with the maximum score

3.1 Sequential

Below is the sequential implementation, and Figure 6 shows its Threadscope output. We tested the program
on a corpus of 5264944 words (31 megabytes) on a 2020 Macbook Pro with an i5 4-core processor and 16
GB of RAM. From the Threadscope output, we found that the execution took 12.641 seconds and used only
one core (which is expected since this is the sequential implementation).

readNGramFreqs :: B.ByteString -> M.Map [B.ByteString] Int

readNGramFreqs contents = M.fromList $ map getListTuple (B.lines contents)

where

getListTuple x = case B.words x of

[freq, a, b, c] -> ([a, b, c], fst $ fromJust $ B.readInt freq)

[freq, a, b] -> ([a, b], fst $ fromJust $ B.readInt freq)

_ -> ([], 0)

buildTrie :: B.ByteString -> T.Trie Int

buildTrie contents = T.fromList $ map getTuple (B.lines contents)

where

getTuple s = case B.words s of

[freq, a] -> (a, fst $ fromJust $ B.readInt freq)

_ -> (B.empty, 0)

autoComplete :: String -> String -> IO ()

autoComplete knowledgeBaseDir inputFile = do

ifile <- readFile inputFile

let input = processSentence ifile

let trie = buildTrie f1 -- f1 is 1-gram file contents as ByteString

let words = T.toList $ T.submap prefix trie -- prefix is last "word" in contents

let m2 = readNGramFreqs f2 -- f2 is 2-gram file contents as ByteString

let m3 = readNGramFreqs f3 -- f3 is 3-gram file contents as ByteString

let scores = zipWith3 comb words (calcF m2 g2 words) (calcF m3 g3 words)

print $ fst $ maximumBy (comparing snd) scores

where

makeGrams words g = map (makeNGrams g) words

calcF m g w = map (getFreq m) (makeGrams w g)

Note: For brevity some code was omitted

• fname - gets n-gram file path

• processSentence - cleans up text

• prefix - the word to autocomplete

• comb - combines scores for three tuples

• getFreq - does map lookup to get tuple

• makeNGram - appends word to generic N-gram

7

Figure 6: Threadscope output for AC sequential implementation.

3.2 Naive Parallel: parList on calcF

We started by played around with printing and found that the zipWith3 statement was the most time
consuming part of the program. As such it made sense to focus on parallelizing the calcF function since it
does the majority of the work calculating the scores for each of the resulting words.

We started using parList to create a spark for each part of the list and then evaluate them to normal form
using the rdeepseq strategy.

makeGrams words g = map (makeNGrams g) words `using` parList rdeepseq

calcF m g w = map (getFreq m) (makeGrams w g) `using` parList rdeepseq

This resulted in some speedup (around x1.4 for 2 cores) but the Threadscope output (Figure 7) showed that
the strategy was not as parallel as expected. In particular we were not able to get the program to use all of
the cores, instead it ran the two calcF calculations (2-grams and 3-grams) in parallel and then finished the
rest of the program sequentially.

8

Figure 7: Threadscope output for AC parallel strategy 1.

Cores Time
1 core 12.016s
2 cores 8.810s
3 cores 9.445s
4 cores 9.371s

The timing on the different cores also corroborated the Threadscope results. Two cores was the fastest since
the parList strategy only resulted in the two calcF calls being done in parallel and as a result it would use
two cores at most.

3.3 Parallel 2: parList everywhere

After running the code from our first parallel strategy we realized that much of the work that appeared to
have been done before was actually being done lazily and it was not until the parList call for calcF that
the setup code (reading in the files, creating the trie, etc...) was actually being done. So we added the
same parList rdeepseq strategy to the readNGramFreqs and buildTrie functions as well to prompt the
program to begin those calculations earlier.

readNGramFreqs :: B.ByteString -> M.Map [B.ByteString] Int

readNGramFreqs contents = M.fromList (map getListTuple (B.lines contents) `using` parList rdeepseq)

where

getListTuple x = case B.words x of

[freq, a, b, c] -> ([a, b, c], fst $ fromJust $ B.readInt freq)

[freq, a, b] -> ([a, b], fst $ fromJust $ B.readInt freq)

_ -> ([], 0)

buildTrie :: B.ByteString -> T.Trie Int

buildTrie contents = T.fromList (map getTuple (B.lines contents) `using` parList rdeepseq)

where

9

getTuple s = case B.words s of

[freq, a] -> (a, fst $ fromJust $ B.readInt freq)

_ -> (B.empty, 0)

autoComplete :: String -> String -> IO ()

autoComplete knowledgeBaseDir inputFile = do

ifile <- readFile inputFile

let input = map B.pack (processSentence ifile)

let trie = buildTrie f1 -- f1 is 1-gram file contents as ByteString

let words = T.toList $ T.submap prefix trie -- prefix is last "word" in contents

let m2 = readNGramFreqs f2 -- f2 is 2-gram file contents as ByteString

let m3 = readNGramFreqs f3 -- f3 is 3-gram file contents as ByteString

let scores = zipWith3 comb words (calcF m2 g2 words) (calcF m3 g3 words)

print $ fst $ maximumBy (comparing snd) scores

where

makeGrams words g = map (makeNGrams g) words `using` parList rdeepseq

calcF m g w = map (getFreq m) (makeGrams w g) `using` parList rdeepseq

As you can see from the Threadscope output in Figure 8 there is now a lot more work being done upfront
to process the files. However the sparks are out of control with (roughly) 5 million being generated and only
1/2 a million of them being converted. As a result this strategy is even slower than before despite being able
to utilise all four cores.

Figure 8: Threadscope output for AC parallel strategy 2.

10

Cores Time
1 core 13.438s
2 cores 14.152s
3 cores 11.044s
4 cores 10.569s

3.4 Parallel 3: parListChunk

Since the last attempt at speeding up the program resulted in huge amounts of spark overflow we decided to
try and regulate the number of sparks being created to avoid having such high overhead. Using parListChunk
and chunk sizes of 100 we were able to significantly reduce the overflow and sparks being created. This
resulted in a much better rate of overflow and garbage collection but 3/5ths of the sparks were still not being
converted. Furthermore, the two parallel runs of calcF were no longer running on two separate cores.

Figure 9: Threadscope output for AC parallel strategy 3.

Cores Time
1 core 13.191s
2 cores 12.707s
3 cores 12.405s
4 cores 12.408s

3.5 Parallel 4: parBuffer and two chunk sizes

Our final parallel strategy involved using parBuffer and two chunk sizes. Using parBuffer was much
more space efficient than parList since it is lazy and waits for sparks to finish before computing more
of the list. This meant that the sparks themselves were much more efficient. Additionally since the IO
work (readNGramFreqs and buildTrie) were operating on huge files we tailored the chunk sizes to be more

11

appropriate to their work the IO chunks sizes were 5000 while the score chunk sizes were 2000. With this
combination we were able to get nice parallelization across all the cores with the speed peaking at 8.275
seconds on 3 cores which was a x1.53 speedup from pure sequential and a x1.66 speedup from running the
same program on just one core.

Figure 10: Threadscope output for AC parallel strategy 4.

Cores Time
1 core 13.783s
2 cores 10.522
3 cores 8.275s
4 cores 8.858s

12

