
COMS 4995 Project Proposal

Parallelized Particle Swarm Optimization

Xijiao Li (xl2950)
Chen Chen (cc4351)

November 22, 2021

Goals
This project’s main goal is to implement a parallelized Particle Swarm Optimization
algorithm in Haskell. Its implementation will be used to solve two-dimensional
optimization problems; for example, to find the local minima of the the Shekel
function at (0.5,0.5) captured in Figure 1.

Figure 1: Shekel function with 10 minima

1

https://en.wikipedia.org/wiki/Shekel_function
https://en.wikipedia.org/wiki/Shekel_function


Background
Particle Swarm Optimization (PSO) is a population-based stochastic optimization
technique. There are a number of candidates (or particles) which move through
the search space in search of the best solution. Every particle position represents
a potential solution and the goodness/fitness of that solution is measured by an
objective function (the function being optimized).

The algorithm does not require the objective function to be differentiable, so it is
applicable to a wide range of optimization problems. It is used in portfolio optimiza-
tion, heat transfer maximization of energy system, and many other areas.

Upon initialization, each candidate is randomly assigned to a random position and
with a random initial velocity. At each time step, every candidate first updates its
velocity and then the position:

Vi,t+1 = wVi,t + c1r1(Oi,t − Pi,t) + c2r2(Ot − Pi,t)

Pi,t+1 = Pi,t + Vi,t+1

where

• Vi,t := the velocity of candidate i at time t

• Pi,t := the position of candidate i at time t

• Oi,t := the position with min cost ever visited by candidate i at time t

• Ot := the position with min cost ever visited by any candidate at time t

• r1, r2, w, c1, c2: different weight parameters for each term

One can see from the equation that the movement of the candidates is governed
by three factors: the inertia weight component (Vi,t), the cognitive component
(Oi,t − Pi,t) and the social component (Ot − Pi,t). The inertia weight component
allows a candidate to maintain some momentum between iterations. The cognitive
component allows the candidate’s movement to be influenced by its memory of good
positions that it has found in earlier iterations. The social component will cause
the good positions found by other candidates of the swarm to influence the given
candidate’s movement.

2

https://en.wikipedia.org/wiki/Particle_swarm_optimization


Overall the logics of PSO can be found in the pseudo code:

Algorithm 1: PSO algorithm
1 begin
2 Initialize N candidates on the search space;
3 for time step t← 0 to max_iter do

// update all candidates
4 for every particle i do
5 Update velocity to Vi,t;
6 Make next movement to position to Pi,t;
7 Calculate function value at its current position Pi,t;
8 (Potentially) update Oi,t and Ot;
9 end

10 end
11 end

The sequential PSO will yield O(m ∗ n) runtime, where m is the total number of
iterations and n is the number of candidates.

Design
The project design has three parts: baseline implementation, parallel implementa-
tion, and benchmarking.

The baseline implementation would follow the unoptimized, sequential implemen-
tation of PSO algorithm. In the conventional imperative approach, the state of the
candidates is stored as an array of candidate objects, and at each time step, we
traverse through the array and update each candidate’s velocity and position. In
Haskell, the state of candidates will be stored in the Candidate datatype, and the
traversal will be done using recursion. The update will not incur any side-effect,
since it only depends on the results and statistics from the last time stamp, which
must have been determined at that point.

We will parallelize the computation in the update all candidates step. Specifically,
when updating candidate states, we will splitting the candidates into groups and
update them in parallel. Assuming that the number of candidates will be much
bigger than the number of CPU threads, we also plan to explore different strategies
to split up the workloads to achieve better load balancing.

For the benchmarking part, we plan to evaluate the performance of our baseline and
parallelized implementation in terms of runtime and CPU utilization when given
different cost functions. We also plan to explore the scalability of our parallelized
implementation with number of cores.

3


