
COMS 4995 PFP Project Proposal: ParRE

Eumin Hong (eh2890) and Christopher Yoon (cjy2129)

November 23, 2021

Project Objective

We aim to implement parallel regular expression matching via a data-parallel NFA implementation. We
summarize our deliverables as followed:

1. Implementation of a module for regex parsing, NFA generation, sequential and parallel matching.

2. Rigorous evaluations of parallel matching in large text files.

3. Performance evaluation and comparisons with various K cores and sequential implementation (K = 1),
as well as other Haskell implementations if time left.

4. (If time left) Implementation of real-world regex applications.

5. (If a lot of time left) Lower bound computation of number of states needed for computationally equiv-
alent DFA from NFA with n states.

To clarify: We are not trying to find a needle in a haystack, but trying to determine if the whole text
matches a regex pattern. As a crude example, we would check if a 1 GB long string of ”a . . . b . . . c” matches
the regex R = ab∗c∗.

Background

A regular expression (regex) is a search pattern that can be recognized with a finite state machine (FSM).
Specifically, the underlying FSM for regex patterns is a nondeterministic finite automata (NFA). Formally, an
NFA is a five-tuple (Q,Σ, q0, δ, F) where Q is the finite set of states, Σ is a finite alphabet, δ : Q×Σε → P(Q)
is the transition function (where Σε = Σ ∪ {ε}), q0 ∈ Q is the start state, and F ⊆ Q is the set of accept
states (Sipser).

To check if a string w = w0w1 . . . wk−1 satisfies a regex pattern R, w can be run on the corresponding NFA
N with the initial state q0. Then, for every character wi of w, the transition function is performed with the
current state qi and the current character wi. After performing the transition function δ(qi, wi), the NFA
follows all possible resulting states in parallel. After reading the entire string w, if at least one instance of
N is in a state q ∈ F , then N accepts w.

Instead of having N branch with each possible next state, the set of reachable states Si can be recorded to
achieve a simulation of N that does not branch. This approach has roots in the NFA to DFA (deterministic fi-
nite automata) conversion algorithm from Sipser’s “Theory of Computation.” Upon initialization, S0 = {q0}.
For each character wi, N updates the set of reachable states according to the equation Si+1 =

⋃
q∈Si

δ(q, wi).
After reading the whole string w, if Sk ∩F ̸= ∅, N accepts w (in other words, there is some state q ∈ Sk that
is an accept state). The worst-case runtime for such implementation of an NFA with n states on a string w
(where k = |w|) is O(nk).

1

Approach

Despite their sequential nature, NFAs can be partially parallelized. First, partition the input string w into K
chunks (or substrings) of similar length, where Ci is chunk i and w = C1 . . . CK . Additionally, the transition
function δ can be generalized to the transition lookup table Ti : Si → Si+1, which takes in the set of
reachable states Si and computes the next set of reachable states Si+1 with the input wi. For each chunk
Cn = wi . . . wj , the overall transition lookup table Ti→j : Si → Sj+1 can be computed, which effectively
merges the transition lookup tables Ti, . . . , Tj into a single transition lookup table Ti→j that takes in the set
of reachable states Si and produces the set of reachable states Sj+1 after all characters wi . . . wj in chunk
Cn.

These K transition lookup tables Ti1→ji , . . . Tik→jk can be computed in parallel. Then, the initial set of
reachable states S0 = {q0} can be passed through all K transition lookup tables in order. This operation
would result in the final set of reachable states Sk. If intersection of Sk and the set of accept states F is
non-trivial, then there exists an accept state that is reachable from q0, and N would accept w. The worst-case
runtime for one chunk of this implementation of an NFA with n states on a string w (where k = |w|) that
is split into K chunks is O

(
nk
K

)
. With at least K cores, the computation on each chunk can be parallelized,

and when n < K, the runtime of the parallelized version of this algorithm outperforms the sequential version
(when K = 1).

Rough Outline of Algorithm

We summarize our approach with the following algorithm:

• Convert regex R to NFA N with n states (where n is bounded above by some integer for reasonable
runtimes)

• Given K cores, split input string w into K chunks C1, . . . , CK .

• For every chunk Cn = wp . . . wq,

a. Run transition function δ on each character ws in chunk Cn for every state q ∈ Q to generate
transition lookup table Ts.

b. Combine all transition lookup tables Ti, . . . , Tj to generate transition lookup table Ti→j .

• Pass S0 = {q0} through each of the K transition lookup tables Tin→jn for chunk Cn to obtain the final
set of reachable states SK

• Compute the intersection of Sk and the set of accept states F to determine if N accepts w.

References

[1] Gabriella Gonzalez. Regular expressions implemented in haskell, 2020.

[2] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-state machines. SIG-
PLAN Not., 49(4):529–542, feb 2014.

[3] Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third
edition, 2013.

2

