COMS 4995 PFP Project Proposal: **ParRE**

Eumin Hong (eh2890) and Christopher Yoon (cjy2129)

November 23, 2021

Project Objective

We aim to implement parallel regular expression matching via a data-parallel NFA implementation. We summarize our deliverables as followed:

- 1. Implementation of a module for regex parsing, NFA generation, sequential and parallel matching.
- 2. Rigorous evaluations of parallel matching in large text files.
- 3. Performance evaluation and comparisons with various K cores and sequential implementation (K = 1), as well as other Haskell implementations if time left.
- 4. (If time left) Implementation of real-world regex applications.
- 5. (If a lot of time left) Lower bound computation of number of states needed for computationally equivalent DFA from NFA with n states.

To clarify: We are not trying to find a needle in a haystack, but trying to determine if the whole text matches a regex pattern. As a crude example, we would check if a 1 GB long string of "a ... b ... c" matches the regex $R = ab^*c^*$.

Background

A regular expression (regex) is a search pattern that can be recognized with a finite state machine (FSM). Specifically, the underlying FSM for regex patterns is a nondeterministic finite automata (NFA). Formally, an NFA is a five-tuple $(Q, \Sigma, q_0, \delta, F)$ where Q is the finite set of states, Σ is a finite alphabet, $\delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function (where $\Sigma_{\varepsilon} = \Sigma \cup {\varepsilon}$), $q_0 \in Q$ is the start state, and $F \subseteq Q$ is the set of accept states (Sipser).

To check if a string $w = w_0 w_1 \dots w_{k-1}$ satisfies a regex pattern R, w can be run on the corresponding NFA N with the initial state q_0 . Then, for every character w_i of w, the transition function is performed with the current state q_i and the current character w_i . After performing the transition function $\delta(q_i, w_i)$, the NFA follows all possible resulting states in parallel. After reading the entire string w, if at least one instance of N is in a state $q \in F$, then N accepts w.

Instead of having N branch with each possible next state, the set of reachable states S_i can be recorded to achieve a simulation of N that does not branch. This approach has roots in the NFA to DFA (deterministic finite automata) conversion algorithm from Sipser's "Theory of Computation." Upon initialization, $S_0 = \{q_0\}$. For each character w_i , N updates the set of reachable states according to the equation $S_{i+1} = \bigcup_{q \in S_i} \delta(q, w_i)$. After reading the whole string w, if $S_k \cap F \neq \emptyset$, N accepts w (in other words, there is some state $q \in S_k$ that is an accept state). The worst-case runtime for such implementation of an NFA with n states on a string w (where k = |w|) is O(nk).

Approach

Despite their sequential nature, NFAs can be partially parallelized. First, partition the input string w into K chunks (or substrings) of similar length, where C_i is chunk i and $w = C_1 \ldots C_K$. Additionally, the transition function δ can be generalized to the transition lookup table $T_i : S_i \to S_{i+1}$, which takes in the set of reachable states S_i and computes the next set of reachable states S_{i+1} with the input w_i . For each chunk $C_n = w_i \ldots w_j$, the overall transition lookup table $T_{i \to j} : S_i \to S_{j+1}$ can be computed, which effectively merges the transition lookup tables T_i, \ldots, T_j into a single transition lookup table $T_{i\to j}$ that takes in the set of reachable states S_i and produces the set of reachable states S_{j+1} after all characters $w_i \ldots w_j$ in chunk C_n .

These K transition lookup tables $T_{i_1 \to j_i}, \ldots T_{i_k \to j_k}$ can be computed in parallel. Then, the initial set of reachable states $S_0 = \{q_0\}$ can be passed through all K transition lookup tables in order. This operation would result in the final set of reachable states S_k . If intersection of S_k and the set of accept states F is non-trivial, then there exists an accept state that is reachable from q_0 , and N would accept w. The worst-case runtime for one chunk of this implementation of an NFA with n states on a string w (where k = |w|) that is split into K chunks is $O(\frac{nk}{K})$. With at least K cores, the computation on each chunk can be parallelized, and when n < K, the runtime of the parallelized version of this algorithm outperforms the sequential version (when K = 1).

Rough Outline of Algorithm

We summarize our approach with the following algorithm:

- Convert regex R to NFA N with n states (where n is bounded above by some integer for reasonable runtimes)
- Given K cores, split input string w into K chunks C_1, \ldots, C_K .
- For every chunk $C_n = w_p \dots w_q$,
 - a. Run transition function δ on each character w_s in chunk C_n for every state $q \in Q$ to generate transition lookup table T_s .
 - b. Combine all transition lookup tables T_i, \ldots, T_j to generate transition lookup table $T_{i \to j}$.
- Pass $S_0 = \{q_0\}$ through each of the K transition lookup tables $T_{i_n \to j_n}$ for chunk C_n to obtain the final set of reachable states S_K
- Compute the intersection of S_k and the set of accept states F to determine if N accepts w.

References

- [1] Gabriella Gonzalez. Regular expressions implemented in haskell, 2020.
- [2] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-state machines. SIG-PLAN Not., 49(4):529–542, feb 2014.
- [3] Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third edition, 2013.