
COMS W4995 Parallel Functional Programming
Project Proposal: Palindrome Partitioning

Jesse Chong
jlc2332@columbia.edu

November 22 2021

INTRODUCTION

Palindrome partitioning is an optimization1

problem where we must split a string into
palindrome substrings and then return the minimum
number of “cuts” needed to complete the partition.

To clarify what “cuts” are, take this for example:
the string “abracecar” would require 2 cuts to be
minimally partitioned into the substrings “a”, “b”,
and “racecar”. Also strings can only be made of
lowercase alphabetical characters.

This problem is a variation of the matrix chain
multiplication problem.2

IMPLEMENTATION

The sequential solution to this problem would be
to iterate over the given string for every possible
substring and check that we found the longest
possible palindromic substring. For example, in the
“abracecar” example, partitioning on the substring
“racecar” is the best choice while partitioning every
character by itself in “racecar” (e.g., “r”, “a”, “c”..
etc.) would be the worst possible partition. The
palindrome check would require validating that the
string itself is equivalent to its own reverse.

For a naive solution, the algorithm would take
time due to the iteration over the input string,𝑂(𝑛3)

each of its substrings, and checking if the substring
is a palindrome.

PROPOSAL

There are various recursive and dynamic
programming solutions to this problem. Naive3

3 GeeksForGeeks solutions to the problem -
https://www.geeksforgeeks.org/palindrome-partitioning-dp-17/

2 MCM article -
https://en.wikipedia.org/wiki/Matrix_chain_multiplication

1 Taken from this Leetcode problem -
https://leetcode.com/problems/palindrome-partitioning-ii/

solutions can take time while highly𝑂(𝑛3)
optimized solutions can take time. For my𝑂(𝑛2)
project, I plan to implement both parallel and serial
solutions to this problem and compare their
performances. With parallelization, I hope to
achieve a performance faster than the serial𝑂(𝑛2)
solutions.

I will compare each solution using various test
cases (short string, medium string, long string, very
long string, etc.) and metrics such as average,
minimum, and maximum time taken. I will also
compare using other relevant parallelization metrics
such as sparks converted, garbage collected, fizzled,
etc.

1

https://www.geeksforgeeks.org/palindrome-partitioning-dp-17/
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://leetcode.com/problems/palindrome-partitioning-ii/

