Parallel Floyd-Warshall Paths (PFP)

Pelin Cetin, pc2807

1. Introduction

Finding the shortest path (SP) between any two nodes in a large-scale network analysis is a
difficult but crucial endeavor. The SP can assist the developer in analyzing the performance of
information dissemination and researching latent relationships in weighted social networks,
among other things.

The all-pair-shortest-paths (APSP) issue is defined as the challenge of finding the shortest path
between every pair of nodes. Parallelization has proven to be advantageous in this domain
because sequential solutions for this issue typically result in lengthy runtimes.

My project will use a parallel functional Floyd-Warshall algorithm. | have seen many
non-functional parallel versions of this algorithm, but not a functional one.

2. Project Idea
2.1 Objective

The goal of this project is to generate the shortest paths for all pairs in a directed
graph. | will prove that the parallel version will run faster than the sequential
version.

2.2 Algorithms

For directed graphs, the Floyd-Warshall algorithm finds the shortest path for all
pairs. The algorithm generates shorter pathways repeatedly using the adjacency
matrix of a graph as input. The distance-matrix contains all of the shortest
pathways after |V| iterations.

The main principle behind parallelizing this algorithm is to divide the matrix and
distribute the computation amongst the processes. Each process has its own
section of the matrix to which it is assigned. The matrix is divided into squares of
equal size, each of which is given to a process.

Here is an example of a non-functional parallel pseudocode of Floyd-Warshall
with 2-D block mapping (taken from https://moorejs.github.io/APSP-in-parallel/)

floyd(C, A, B) {
C, A, B are bxb matrices
for (int k = 0; k < b; k++) {
for (int j = 0; j < b; j++) |
for (int i = 0; 1 < b; i++) {
Cli]1[]] = min(C[i][]], A[i]([k] + B[k][3]])

blocked_floyd_warshall (W, n) {
// split W into "blocks" with blocksize "b"
// For simplicity if b divides n we will have B blocks
for (int k = 0; k < B; k++) {
// Dependent Phase
floyd (W_kk, W_kk, W_kk);

// Partially Dependent Phase
parallel for (int j = 0; j < B && j != k; j++)
floyd(W_kj, W_kk, W_kj)

parallel for (int i = 0; i < B && i != k; i++) {
floyd (W_ik, W_ik, W_kk);
for (int j = 0; jJ < B && j !'= k; j++) {

// Independent Phase
floyd(W_ij, W_ik, W_kj);

2.3 Deliverables

| will provide serial and parallelized implementations of all pairs shortest paths for
the completion of this project. Additionally, | will provide test results showing
comparisons of the two versions of the algorithm.

3. Resources

https://Imoorejs.github.io/APSP-in-parallel/
h Jlen.wiki ia.org/wiki/Parallel_all-pairs_sh h_al

https:/lieeexplore.ieee.org/document/4447721?arnumber=4447721

https://moorejs.github.io/APSP-in-parallel/
https://en.wikipedia.org/wiki/Parallel_all-pairs_shortest_path_algorithm
https://ieeexplore.ieee.org/document/4447721?arnumber=4447721

