
Parallel N Puzzle Solver

Zhonglin Yang, zy2496 Yuxuan Luo, yl4524

1 Introduction

For our group project, we would like to implement a parallel N puzzle solver in
Haskell. The N puzzle problem is a classical search problem. The start state of
the search problem is that there are N tiles numbered from 1 to N inside a side
length

√
N + 1 square frame and one position inside the square frame is left

unoccupied. Each step, one tile that are adjacent to the unoccupied position
can slides to the unoccupied position. The final goal is to have N tiles placed in
a desired order. The following picture illustrates one possible pair of start state
and goal state for an 8 puzzle problem.

2 Search Algorithms

To solve a N puzzle problem, search algorithms can be used. We can define a N
puzzle problem as a classical search problem with a size (N +1)! state space. It
is hard to find (NP-hard) a optimal solution for a N puzzle problem, however,
finding a feasible solution is not difficult. Uniform-cost search algorithm and
A* algorithm will be used to solve N puzzle problems in our project.

2.1 Uniform-cost search

Uniform-cost search algorithm is a variant of Dijikstra’s algorithm, which is
usually used for large graph search problems. A priority queue is also used to
store nodes. In the priority queue, the minimum cumulative cost node get the
maximum priority. The algorithm is the following.

1



2.2 A* search

A* search is an informed search algorithm. It is almost identical to uniform-cost
search but takes the state of a node and the search state space into consideration.
It use heuristic to reduce the amount of search. A heuristic function h(x) is used
to estimate the smallest possible cost from state x to the goal state. g(x) is the
minimum cost from the start state to state x. A* search chooses a node from
the queue with lowest g(x) + h(x) while Uniform-cost search chooses a node
from the queue with lowest g(x).

3 Objective

Our base implementation can be found on [1]. For each iteration, the program
generates all possible moves and adds them to a priority queue where they are
placed based on a combination of the heuristic and the search algorithm pro-
vided by the user. The program then applies the best move from the priority
queue, makes a recursive call, and then applies the second-best move from the
priority queue, makes a recursive call... until the solved state of the board is
reached, or until all moves have been exhausted.

This naive implementation does a linear search through all the possible moves
with recursion. While it is technically correct and efficiently optimized, it still
leaves most of the computing resources on the table if the CPU has more than
one core. We will explore different parallel evaluation strategies discussed in
class and experiment with parameters such as thread and parallelization depth
to gain a more granular control over the performance. According to [2], the
15-Puzzle can reach upwards a depth of 80 and billions of intermediate states.
As a result, we believe there are lots of potential to improve the efficiency of the
solver if we are able to utilize the CPU fully. In the meantime, it is very import
for us to find the sweet of of when to stop parallel evaluation so the system is
not overwhelmed with wasted Sparks.

References

[1] Keuhdall. Keuhdall/n-puzzle: Implementation of algorithms to solve n-
puzzles in haskell. https://github.com/keuhdall/N-Puzzle/.

[2] 15-puzzle optimal solver. http://kociemba.org/themen/fifteen/fifteensolver.html.

2


