
Parallelized Polynomial Multiplication (MultPoly)

Yaxin Chen (yc3995)

November 17, 2021

Introduction

In this project, I will parallelize two algorithms for multiplying two polynomials and compare
their runtime. One is the native approach with a time complexity of O(n2), where n is the degree
of the polynomial; the other utilizes fast fourier transform (FFT) and has a time complexity of
O(n log n).

Brute-Force Polynomial Multiplication

A degree-(n-1) polynomial can be represented by an n-element array storing its coefficients. Sup-

pose we have array A representing polynomial a(x) =
∑n−1

i=0 A[i]xi and B representing polynomial

b(x) =
∑n−1

i=0 B[i]xi, the array C for the product of a(x) and b(x) can be calculated by

for i ← 0 to n-1 do
for j ← 0 to n-1 do
C[i + j] ← C[i + j] + A[i] * B[j];
end for

end for

Parallelization: To parallel the above calculation, I plan to use MapReduce framework.
The mapper takes pairs of coefficient of two input polynomials (A[i], B[j]), multiplies them, and
sends (key: i+j, value: A[i]*B[j]) to the reducer. The reducer sums the received product and
gives output coefficient at index (i+j).

Polynomial Multiplication via FFT

The polynomial multiplication can be speed up to O(n log n) by fast fourier transforming the
input polynomials, multiplying them and the inverse fourier transforming the product.

The discrete fourier transform (DFT) of an n-element sequence A is another n-element se-
quence P given by

P [m] =

n−1∑
k=0

A[k]ωmk
n , m = 0, 1, ..., n− 1

where ωn = e2πi/n is the primitive nth root of unity.
For 0 ≤ m < n/2, DFT satisfies

P [m] = P1[m] + ωmP2[m] (1)

1



P [n/2 +m] = P1[m]− ωmP2[m] (2)

where

P1[m] =

n/2−1∑
k=0

A[2k]ω2mk
n

P2[m] =

n/2−1∑
k=0

A[2k + 1]ω2mk
n

FFT utilizes the above property (Eq 1, 2). The algorithm for FFT is shown in Algorithm 1.

Algorithm 1 Fast Fourier Transform

1: procedure FFT(A, n, ω)
2: if n = 1 then return A;
3: else
4: for k ← 0 to n/2 - 1 do
5: A1[k] = A[2k]
6: A2[k] = A[2k + 1]
7: end for
8: P1 ← FFT (A1, n/2, ω

2)
9: P2 ← FFT (A2, n/2, ω

2)
10: for m ← 0 to n - 1 do
11: P [m]← P1[mmod (n/2)] + ωmP2[mmod (n/2)]
12: end for
13: end if
14: end procedure

Parallelization: Since the calculation of P1 and P2 are independent with each other, their
calculation can be parallelized. This part can go parallel to a certain depth and I will investigate
the speedup versus the depth. What’s more, binary-exchange algorithm and transpose algorithm
[1] can parallelize FFT with a better granularity, and I will implement them in Haskell and do
some comparisons.

References

1. https://courses.engr.illinois.edu/cs554/fa2015/notes/13_fft_8up.pdf

2. http://www.cs.toronto.edu/~denisp/csc373/docs/tutorial3-adv-writeup.pdf

3. https://cse.hkust.edu.hk/mjg_lib/Classes/COMP3711H_Fall14/lectures/DandC_Multiplication_
Handout.pdf

2

https://courses.engr.illinois.edu/cs554/fa2015/notes/13_fft_8up.pdf
http://www.cs.toronto.edu/~denisp/csc373/docs/tutorial3-adv-writeup.pdf
https://cse.hkust.edu.hk/mjg_lib/Classes/COMP3711H_Fall14/lectures/DandC_Multiplication_Handout.pdf
https://cse.hkust.edu.hk/mjg_lib/Classes/COMP3711H_Fall14/lectures/DandC_Multiplication_Handout.pdf

