
Parallelized Expectiminimax with 2048

Matthew Broughton (mb4207), Kent Hall (kjh2166)

November 22, 2021

1 Background

2048 is a game where players move tiles valued at powers of 2 around a 4x4 grid
while trying create a tile of value 2048. Every turn, a 2 or 4 valued tile appears
on the board. The player can then shift the tiles in one of 4 directions. The tiles
move until they hit the edge of the board or another tile. If two tiles collide and
both are the same value, they merge and the resulting tile has double the value.
In this fashion the player can manipulate the tiles to create as many high value
tiles as possible. While the game is considered won when a tile of value 2048 is
created, the player can continue playing the game until no possible moves are
left.

2 Adversarial Algorithm

The optimal algorithm for an AI to run off of to try and win a game of 2048 is
expectiminimax. Expectiminimax is a variation of minimax, which is a adver-
sarial algorithm for choosing the next move in a game. This incorrectly assumes
that the computer is intentionally placing new tiles in antagonistic ways against
the player, but the algorithm still has the same result of picking the optimal
move (most of the time). In minimax, the algorithm creates a decision tree
where each level represents the player’s or the computer’s turn (alternating),
and each node represents an action. Each node contains a value corresponding
to how good the board is for the player, computed via some heuristic. The al-
gorithm then finds the optimal move for the current turn by searching the tree
(via DFS) for the move that not only maximizes the board’s value now, but
also maximizes it over the course of the next X turns while also minimizing the
possible damage by the computer over the same time frame. Expectiminimax
adds in an additional level to the tree that simulates random element, for our
purposes it’ll simulate whether a 2 or 4 tile is placed. Note that this search can
be sped up some what with the help of Alpha/Beta pruning, which removes
branches of the tree that cannot possibly be optimal from consideration as the
algorithm runs.

1



3 Parallelization

The majority of the move decision process is comprised of a DFS for deciding the
optimality of the 4 possible moves for the current turn. Because each recursive
call of DFS is independent of all other calls on the same level, parallelization of
expectiminimax should be straightforward(TM) as each recursive call can receive
its own thread. We will likely make use of parBuffer to ensure the overhead of
the threads does not end up dominating the runtime of the algorithm.

2


