
Implementing EpiSimdemics in Haskell - Proposal
Collaborators: Andrew Schreiber ajs2409

November 22, 2021

1 Problem Statement
In the paper "EpiSimdemics: an Efficient Algorithm for Simulating the Spread of Infectious
Disease over Large Realistic Social Networks" [1] the authors describe an algorithm for pre-
dicting the spread of a virus through a given population, given a series of interactions between
the members of the population. Traditional disease models work by simulating each event
(a group of people, some of whom are infectious, at a location for a given period of time), in
serial, constantly updating each individuals health status after each interaction. This means to
compute the model, you either implement a global clock and process each event in order, or
build a dependency graph of all the events and parse this graph as you compute the outcomes.
Both of these models will be hard to parallelize and expensive to compute.

The novel idea in EpiSimdemics relies on a fact that we have seen play out throughout the
Covid pandemic: diseases have a minimum latency period, 𝐷𝑚𝑖𝑛. Latency in this case refers to
a period of time between when an individual is infected and when they are infectious (can
infect other people). What this means from an algorithm perspective though, is that if you are
at time 𝑡 in your simulation, no one that is not already infected can become infectious until
time 𝑡 + 𝐷𝑚𝑖𝑛. This means that all the events in (𝑡, 𝑡 + 𝐷𝑚𝑖𝑛) are independent of each other, and
hence can be processed potentially out of order, and in parallel. EpiSimdemics does just that, it
works by iterating in intervals of Δ𝑡 < 𝐷𝑚𝑖𝑛, and for each iteration, process all the events in
parallel. Once that is complete, update each individuals health status (which can also be done
in parallel), and then start the next iteration.

The goal of this project is to implement (a slightly simplified) version of the algorithm described
in the paper in Haskell, and to be able to show the performance benefit gained by enabling
parallelism in the algorithm.

2 Explanation of Algorithm
There are three main steps in the algorithm: transitioning each individuals health state ac-
cording to a predecided disease model, computing the outcome of each event in the specified
time window, and updating each individuals state based on the outcome of each event. As
mentioned above, the algorithm works by iterating over intervals of Δ𝑡 and within each interval
performing the steps described in the below sections.

2.a Disease Model Health State Transitioning
When predicting the spread of a disease, there needs to be a model of how the disease progresses
through an individual. In a simple model, the basic states are uninfected, infected and latent,
infectious, and recovered. As we have previously discussed, EpiSimdemics relies heavily on
the fact that the infected and latent period, lasts for a non trivial amount of time, usually 1-2
days. The first step per time period is to update each person, to make sure they are in the

1



2.b Event Outcome Computations 3 EXPERIMENT DESIGN

appropriate health state for the next time period. I.E. if they have been infected and latent
for the required number of days, they become infectious, and so on. The formal algorithm
describes how someone can transition states part way through a time period, and in that case
you split them up into two people, one for the time period where they are in the first state,
and one for the second. To simplify the implementation for this project, I will not do this, and
assume that people can only transition health states at the start of a new time period. I will
use a simple model that roughly resembles Covid, using a 3 day latency period, and a 10 day
infectious period.

2.b Event Outcome Computations
An event is a group of people in a particular location for a particular period of time. In order
to compute the likelihood that a person, 𝑝𝑖 , gets infected we first need define a few variables.
Let 𝜏 be the length of the event, and 𝑁 be the number of infectious people at the location. To
resemble Covid, we will use 𝜏 in units of 15 minutes. Let 𝑟𝑗 be the infectivity of the disease
for person 𝑗, this is a percentage of how easy it is for a given person to spread the disease. To
simplify the algorithm, we will assume infectivity is a constant, 𝑟 . Let 𝑠𝑖 be the susceptibility
of person 𝑖, this is a percentage representing how susceptible person 𝑖 is to getting infected.
Let 𝜌 be the transmissibility of the disease, which is how well the disease spreads from person
to person. Some diseases spread in the air, like Covid, and are highly transmissible, while
other diseases are less so. Putting all of this together we will use the following equation for
determining the probability that person 𝑖 gets infected with the disease, given they are in a
room with 𝑁 people for time 𝜏 :

𝑝𝑖 = 1 − exp𝜏𝑁 ln (1−𝑟𝑠𝑖𝜌)

What this equation looks like is for a fixed 𝑦 = 𝜏𝑁 , if 𝑦 = 1 (in a room with 1 person for 15
minutes), then as 𝑟𝑠𝑖𝜌 goes from 0 to 1, the percentage chance of getting infected increase
linearly. For 𝑦 between 0 and 1, the growth is exponential, meaning that you have a sub linear
chance of getting the disease. As 𝑦 increases past 1, the curve becomes logarithmic, steepen-
ing as 𝑦 gets large, increasing your changes substantially of getting infected, even with low 𝑟𝑠𝑖𝜌.

This step of the algorithm will process each event, compute this equation for each person in
the event, simulate the experiment to see if the person ended up getting infected, and store the
outcome of that to a list of event of outcomes for each person.

2.c Post Events Per Person Processing
The post processing step is the most straightforward step. Given person 𝑖 and a list of outcomes
of the events for the person (which are 1 for newly infected, and 0 for not infected) just ’logical
and’ the results together and update the persons health state.

3 Experiment Design
One extra item worth noting, is that although in the papers associated with EpiSimdemics
they describe performance stats on particular datasets that they generated, they do not publish
the datasets. This will mean that I will have to generate the dataset for the simulation. My
basic plan to do this is to pick a fixed number of people (hopefully around 1 - 10 million) and a

2



REFERENCES REFERENCES

fixed number of locations (probably around 100K), and then for each person per day, pick a
random number of events (uniformly distributed from 0-10) and randomly distribute them over
the locations. Each location per person will have to have a time they are there, for this I will
randomly assign a length of time, guaranteeing that no person is in two places at once. I plan
to start off with a small dataset with less people and locations, and then adjust the parameters
as necessary to get a dataset that is complex enough to see performance results of parallelism,
but not too complex that it runs for hours on my machine.

References
[1] Barrett, Christopher L. and Bisset, Keith R. and Eubank, Stephen G. and Xizhou Feng

and Marathe, Madhav V. EpiSimdemics: an Efficient Algorithm for Simulating the Spread
of Infectious Disease over Large Realistic Social Networks. SC ’08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing

[2] Talwar, Kunal, and Udi Wieder. Overcoming the Scalability Challenges of Epidemic Simu-
lations on Blue Waters. 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, 2014

3


	Problem Statement
	Explanation of Algorithm
	Disease Model Health State Transitioning
	Event Outcome Computations
	Post Events Per Person Processing

	Experiment Design

