The Parallel Apriori Algorithm |

Hongfei Chen (hc3222)
November 20, 2021

1 Overview

The project will implement a Haskell program for the Apriori Algorithm introduced in
the paper “Fast algorithms for mining association rules” (Agrawal & Srikant, [1994). I will
apply a parallel implementation to improve the performance of the Apriori Algorithm on

a large dataset.

2 Background

The Apriori Algorithm is an algorithm for data mining, in particular, association rule min-
ing. It searches for boolean association rule of the frequent itemsets in a dataset, which is
useful for discovering the items that tend to appear together in a transaction. The main
idea of the algorithm is that for every possible size of itemsets, generate the candidate
frequent itemsets from the smaller-sized frequent itemsets and then filter the candidates
based on the required minimum support value (Figure[I). The candidate generation con-
sists of the join step (Figure[2) and the prune step (Figure[3), in which the algorithm finds
the candidate size-k itemsets by self-joining the size-(k — 1) itemsets, and then prune those
who have a subset which is not a size-(k — 1) itemset. Finally, the association rules which

satisfy the minimum confidence value will be output.

1) Ly = {large 1-itemsets};

2) for (k=2; Lr—1 #0; k++ ) do begin

3) C = apriori-gen(Lx—_1); // New candidates
4) forall transactions ¢ € D do begin

5) Cy = subset(Cy, t); // Candidates contained in ¢
6) forall candidates ¢ € C; do

7) c.count-+-;

8) end

9) Ly = {c € Ck | c.count > minsup}

10) end

11) Answer = Uk Ly;

Figure 1: The Apriori Algorithm

“This is a final project proposal for COMS 4995 Parallel Functional Programming, Fall 2021.



insert into C}

select p.item;, p.items, ..., pitemg_1, g.itemg_1
from Ly_1 p, Lx—1 ¢
where p.item; = ¢.itemq, ..., pitemy_> = ¢.itemp_o2,

patemp_1 < g.itemg_1;
Figure 2: apriori-gen Join Step

forall itemsets ¢ € Cy do
forall (k—1)-subsets s of ¢ do
if (s ¢ Lr—1) then
delete ¢ from Cj;

Figure 3: apriori-gen Prune Step

3 Objectives

The project will apply the Apriori algorithm on a 10, 000-row dataset and find the frequent
itemsets based on some fixed minimum support and confidence value. I will first imple-
ment the non-parallel Haskell program based on the Python implementation written by
me in the past. Then, I will make the implementation parallel and therefore achieve a bet-
ter performance. My plan for now is to introduce parallelism in both the outer for loop
in the Apriori algorithm and the candidate generation process. There are also a few other

steps in the algorithm where filtering is required, which can be done in parallel as well.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. of
20th intl. conf. on vldb (pp. 487-499).



	Overview
	Background
	Objectives

