
nodable

Karen Shi Manager
Ajita Bala Language Guru
Ariel Goldman System Architect
Naviya Makhija Tester

Agenda

1. nodable overview

2. Compiler Architecture

3. Lists

4. Nodes

5. Graphs and Trees

6. Future work

7. Demonstrations

 nodable overview

● nodable is an imperative,

statically typed graphing

language designed to help

users create, use, and

manipulate graphs and trees

● nodable syntax is based on C

and Java

● Graphs are used to represent
relationships in data and have
multiple real-life uses, including
modeling social networks, contact
tracing, and finding the shortest
path in a network

● Our language aims to simplify
graphs by providing built-in
functions and data structures
useful for commonly-used tree
and graph algorithms

primitive types

● nodable has four primitive types: int, float, boolean, and string.

● our language can support int, float, boolean, and string literals

○ integer literals are sequences of multiple decimal digits

○ float literals are sequences of decimal digits

○ boolean literals are either “true” or “false”

○ string literals are character sequences enclosed in double quotes

● Identifiers are names that the user can give to functions and variables.
● Identifiers can consist of a combination of uppercase letters, lowercase letters, digits, and

underscores, but must begin with an uppercase or lowercase letter

id = ['a' - 'z' 'A' - 'Z'] ['a' - 'z' 'A' - 'Z' '0'-'9' '_']*

● nodable variables are instantiated by stating the data type of the variable followed by its
identifier. They can also be initialized with a value upon instantiation:

int a;

int b = 10;

● Variables can be global or local (declared within a function)

 identifiers and variables

boolean i;

int main()

{

 int i;

 i = 42;

 print(i + i);

 return 0;

}

functions

● All nodable programs must contain a main() function in order to execute

correctly, as main() is the entry point of the program

● The user can declare and write their own functions that can be called in main.

○ Function declaration syntax:

return_type function_name (params) {...}

○ Functions can return any of the primitive data types, void, nodes, or lists

operators

● Nodable has 5 categories of operators - arithmetic, unary,

assignment, relational, and logical operators

Type of operator Examples

Arithmetic +, -, *, /, % (all left-associative)

Unary !

Assignment = (right-associative)

Relational >, <, ≤, ≥, == (all left-associative)

Logical &&, || (non-associative)

Control Flow

 int x;

 x = 10;

 if (b)

 if (x == 10)

 x = 42;

 else

 x = 17;

 return x;

 int j;

 j = 0;

 while (a > 0) {

 j = j + 2;

 a = a - 1;

 }

 return j;

 for (i = 0 ; i < 5 ;
i = i + 1) {

 print(i);

 }

IF/ELSE WHILE FOR

 lists

● nodable has two fundamental data structures: lists and nodes
● lists are mutable collections of objects or primitive data types or of lists and

nodes. Users can instantiate empty lists or filled lists, and can later append,
update:

list<int> a = [1, 2, 3];

append(a, 4); //appends 4 to the end of the list

a = update_elem(7, a, 0); //replaces element at index 0 with 7

//a = [7, 2, 3, 4];

print(size(a)); //4

● lists can be nested as well:

list<list<int>> b = [[1, 2, 3], [2, 3, 1], [9, 8], []];

list<node<int> > t; = [$1, $2, $3];

nodes

● Nodes are the other fundamental data
type in nodable. Nodes have a unique
identifier, a data field, and can have left
or right children

● Nodes can have any of the four
primitive data types as children - ints,
floats, booleans, or strings. They must
be declared as one of these four types
upon instantiation

● Data literals are assigned to nodes
using the $ symbol

● The built-in functions add_left and
add_right are used to create a
parent-child edge, and get_left and
get_right can be used to access the
child nodes

node<string> n1;
node<int> n2;
node<float> n3;

n1 = $”i am a string node!”;
n2 = $4;
n3 = $3.14;

add_left(n1, n2);
add_right(n2, n3);

print(get_left(n1).data); //4
printf(get_right(n2).data); //3.14

graphs and trees

● nodable does not have data types for
graphs and trees. However, these data
structures can be represented through
nodes and lists

● binary trees can be easily
implemented through the usage of the
node’s get_left and get_right
attributes

● graphs can be represented using a list
of nodes and an adjacency list, as seen
in the example on the right

● weighted graphs can also be
represented using a list of lists of lists
of ints

A

B

C

D

node<string> a = $”A”;
node<string> b = $”B”;
node<string> c = $”C”;
node<string> d = $”D”;

list<node<string>> nodelist
= [a, b, c, d];
list<list<int>> adjlist =
[[1, 2], [3], [1], []];

Compiler architecture

Source code Scanner
(scanner.mll)

Parser
(nodableparser.mly)

AST
(ast.ml)

Semantic
checking

(semant.ml)

Code
generation

(codegen.ml)
LLVM IR

C Library
(c_library.c)

Assembly
codeLinkingExecutable

Testing

● Automated testing using

testall.sh

○ Script that iterates

through /tests

○ *.diff with .nd and .out files

○ 120+ test files

● Fail Tests

○ Checked for failure tests

that gave the error

messages we were

expecting to help users

debug

● Tested each operator, variable,

functions, etc.

● Created more comprehensive

tests that implemented many

features together

Demonstrations

1. List manipulation

a. Declare a list of node<int> elements, and get its size and the average of its values

b. Reverse the list

c. Sort the list using selection sort

2. Tree Traversal

a. Declare nodes, as well as their left and right children nodes

b. Recursively perform a preorder, postorder, and inorder traversal on the trees and print the node

values

3. Check Tree Balance

a. Declare nodes, as well as their left and right children nodes

b. Uses recursive tree height function to determine the height of left and right subtrees

c. Recursively compare heights of subtrees until leaf nodes are reached

1

2 3

4 5

Future work

● Implement trees and graphs as actual data structures

○ Include in each graph a list of nodes and an adjacency list for edges

● Allow users to check if a node is null rather than reserving the value 0 for

null nodes

● Prevent users from breaking tree rules by adding error warnings

