
bugsy
Michael Winitch Ben Snyder Evan Tilley Jason Cardinale

Sofía Sánchez-Zárate

the (ideal) team

Stefén
MANAGER

S. Edwards
SYSTEM ARCHITECT

Edwards
SYSTEM ARCHITECT

Stephen A.
TESTER

Stephen
LANGUAGE GURU

the (actual) team

Sofía
MANAGER

Ben
SYSTEM ARCHITECT

Evan
SYSTEM ARCHITECT

Michael
TESTER

Jason
LANGUAGE GURU

origins

FUN FACT:

the ‘A’ in Stephen
A. Edwards
stands for AST!

● There was once a guinea pig named bugsy...

He didn’t do too much, but everyone liked him and he is a good role
model and our inspiration for ‘bugsy’, the language.

outline
● “the team”

● bugsy overview

● compiler architecture

● testing

● classes

● arrays

● future work

● demonstration

FUN FACT:

the ‘A’ in AST
stands for a**hole
JK -- amazing(;

bugsy overview
● a simple drawing language inspired by p5.js*

● object-oriented design using a blend of Python and Java syntax

○ classes, arrays, boolean logic

● allows for easy creation of shapes using an OpenGL backend

○ shapes: circles, ellipses, squares, rectangles, triangles, regular polygons, lines

○ animation: moveTo, rotateBy, scaleBy

○ stroke, stroke size, and fill: colors passed in as strings (ex: “0.3 0.6 0.1” RGB values)

● forget ints and floats – nums will ease your programming experience!

Visual output

Compile to binary

compiler architecture
Semantic
Analysis

COMPILED
CODE

C Code

LLC + GCC

Lexical Analysis Parsing

LLVM Generation

SCANNER PARSER AST

SAST

SEMANTCODEGEN

BUILTINS OPENGL LIB
OPENGL

openGL library
● custom library connecting openGL to bugsy

● shape structures created to hold information about

each type of shape

○ parameters: shape type, shape ID, x, y, r, w, h, x1, x2, y1, ...

● unique ID strings generated every time a new shape is

created

○ used when animating, loops through array of shapes to check if

we are redrawing the right shape at the right time/place

openGL library

testing
● Test suite that compares an output to an existing file

● Challenge with testing visuals

● Approach: Add a print function to the OpenGL C code that prints out stats of

the shape to confirm the program works as intended

● Pass in a DEBUG flag so that the window can close

if(strcmp(getenv("DEBUG"), "1") != 0) {
 glutMainLoop();
}

nums
● Why num?

○ Simplicity and flexibility

○ Less need to worry about type errors

● Is this even possible?

○ Yes, thanks to build_fptoui

returning 0
● Successful main function should return 0 in LLVM

○ Always best to check in LLVM since that’s about as low as we are concerned for bugsy

(one step above assembly code!)

Don’t do this!

C Program:

 double main(){

 int x = 0;

 return 0.0;

 }

LLVM:

 define dso_local double @main() #0 {
 %1 = alloca i32, align 4
 store i32 0, i32* %1, align 4
 ret double 0.000000e+00
 }

solution (pt. 1)
● Codegen!

○ Insert a return 0 at the end of the main() function:

solution (pt. 2)
● Does this work, and how do we know?

○ Yes -- LLVM!

arrays
Seems like it should be simple enough…

 | SArrayAccess(a, e, l) -> let valu = (expr builder e) in
 L.build_load (L.build_gep (lookup a) [|L.const_int i32_t 0; valu |]
a builder) a builder

This won’t work… why?

Alright, seems like an easy enough fix…
(cast as float)

 | SArrayAccess(a, e, l) -> let valu = L.const_fptosi (expr builder e) i32_t in
 L.build_load (L.build_gep (lookup a) [|L.const_int i32_t 0; valu |] a builder) a builder

Works fine for constant (i.e. arr[5])

arrays (pt.2)
● What about variables?

○ Difficult interfacing LLVM with moe

FUN FACT:

Hans Montero is
a ray of
sunshine2 lines of code in 24 hours:

Root of the problem: https://llvm.org/doxygen/Verifier_8cpp_source.html

future work
● group shapes → with classes!

● RGB color object rather than a string
○ rgb(100, 200, 40) vs. “0.5 0.2 0.1”

● irregular polygons

● simultaneous animations
○ combining rotation, translation, and scaling at once for one object

○ allowing multiple objects to be animated synchronously

● garbage collection

● inheritance

● exceptions

FUN FACT:

2 hours of sleep
can be enough (or
it was today
anyway!)!

future work: classes
● call-site adjustment

● method lifting constructors and class methods

● each instance has its own variables and can use the class methods

syntax ex:

FUN FACT:

classes are more
fun when they’re
not over zoom!

class ~bankAccount {
 string name;
 num bal;
// method_lifting -> ~bankAccount_constructor(string n)
 constructor(string n) {

name = n;
bal = 0;

 }
 //method_lifting -> ~bankAccount_deposit(self, num
amt)
 void deposit(num amt) {

bal += amt;
 }
}

num main (){
 ~bankAccount b = new ~bankAccount(“Stephen”);
 b.deposit(5); // ~bankAccount_deposit(b, 5);
}

lessons learned
● make sure the whole pipeline works before writing hundreds of lines of code on

one file !! we ran into this when creating the library

● make more progress sooner → bugs come up and halt progress, we had an

idealistic idea of how much work was left → cut features

● set realistic goals → we started with an idea to get a robotic arm to move, then

thought we would try drawing chemical formulas, but it turns out drawing

shapes was hard enough

● more planning in the early stages of the project

demo

questions?
thank you for an amazing semester!!!

