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origins

FUN FACT:

the ‘A’ in Stephen 
A. Edwards 
stands for AST!

● There was once a guinea pig named bugsy...

He didn’t do too much, but everyone liked him and he is a good role 
model and our inspiration for ‘bugsy’, the language.



outline
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● demonstration

FUN FACT:

the ‘A’ in AST 
stands for a**hole
JK -- amazing(;



bugsy overview
● a simple drawing language inspired by p5.js*

● object-oriented design using a blend of Python and Java syntax

○ classes, arrays, boolean logic

● allows for easy creation of shapes using an OpenGL backend

○ shapes: circles, ellipses, squares, rectangles, triangles, regular polygons, lines

○ animation: moveTo, rotateBy, scaleBy

○ stroke, stroke size, and fill: colors passed in as strings (ex: “0.3 0.6 0.1” RGB values)

● forget ints and floats – nums will ease your programming experience!
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openGL library
● custom library connecting openGL to bugsy

● shape structures created to hold information about 

each type of shape

○ parameters: shape type, shape ID, x, y, r, w, h, x1, x2, y1, ...

● unique ID strings generated every time a new shape is 

created

○ used when animating, loops through array of shapes to check if 

we are redrawing the right shape at the right time/place



openGL library



testing
● Test suite that compares an output to an existing file

● Challenge with testing visuals

● Approach: Add a print function to the OpenGL C code that prints out stats of 

the shape to confirm the program works as intended

● Pass in a DEBUG flag so that the window can close

if(strcmp(getenv("DEBUG"), "1") != 0) {
        glutMainLoop();
}



nums
● Why num?

○ Simplicity and flexibility

○ Less need to worry about type errors

● Is this even possible?

○ Yes, thanks to build_fptoui



returning 0
● Successful main function should return 0 in LLVM

○ Always best to check in LLVM since that’s about as low as we are concerned for bugsy 

(one step above assembly code!)

Don’t do this!

C Program: 

 double main(){      
 
     int x = 0;
 
     return 0.0;
 
 }

LLVM: 

  define dso_local double @main() #0 {
   %1 = alloca i32, align 4
   store i32 0, i32* %1, align 4
   ret double 0.000000e+00
 }



solution (pt. 1)
● Codegen!

○ Insert a return 0 at the end of the main() function:



solution (pt. 2)
● Does this work, and how do we know?

○ Yes -- LLVM!



arrays
Seems like it should be simple enough…

       

       | SArrayAccess(a, e, l) -> let valu = (expr builder e) in
       L.build_load (L.build_gep (lookup a) [|L.const_int i32_t 0; valu |] 
a builder) a builder

This won’t work… why?

Alright, seems like an easy enough fix…
(cast as float)

       | SArrayAccess(a, e, l) -> let valu = L.const_fptosi  (expr builder e) i32_t in
       L.build_load (L.build_gep (lookup a) [|L.const_int i32_t 0; valu |] a builder) a builder

Works fine for constant (i.e. arr[5])



arrays (pt.2)
● What about variables?

○ Difficult interfacing LLVM with moe

FUN FACT:

Hans Montero is 
*a ray* of 
sunshine2 lines of code in 24 hours:

Root of the problem: https://llvm.org/doxygen/Verifier_8cpp_source.html



future work
● group shapes → with classes!

● RGB color object rather than a string
○ rgb(100, 200, 40) vs. “0.5 0.2 0.1”

● irregular polygons

● simultaneous animations
○ combining rotation, translation, and scaling at once for one object

○ allowing multiple objects to be animated synchronously

● garbage collection

● inheritance

● exceptions

FUN FACT:

2 hours of sleep 
can be enough (or 
it was today 
anyway!)!



future work: classes
● call-site adjustment

● method lifting constructors and class methods

● each instance has its own variables and can use the class methods

syntax ex:

FUN FACT:

classes are more 
fun when they’re 
not over zoom!

class ~bankAccount {
    string name;
    num bal;
// method_lifting -> ~bankAccount_constructor(string n)
    constructor(string n) { 

name = n;
bal = 0;

    }
   //method_lifting -> ~bankAccount_deposit(self, num 
amt)
    void deposit(num amt) { 

bal += amt;
    }
}

num main (){
    ~bankAccount b = new ~bankAccount(“Stephen”);
    b.deposit(5); // ~bankAccount_deposit(b, 5);
}



lessons learned
● make sure the whole pipeline works before writing hundreds of lines of code on 

one file !! we ran into this when creating the library

● make more progress sooner → bugs come up and halt progress, we had an 

idealistic idea of how much work was left → cut features

● set realistic goals → we started with an idea to get a robotic arm to move, then 

thought we would try drawing chemical formulas, but it turns out drawing 

shapes was hard enough

● more planning in the early stages of the project



demo



questions?
thank you for an amazing semester!!!


