
YAMML
Yet Another Matrix Manipulation
Language

Bill Chen
Kent Hall
Janet Zhang
Doria Chen
James Xu

Project Manager
System Architect
Language Guru
Tester
Tester

Motivation

● As machine learning is becoming more prevalent,
there is an increasing need for easier matrix-based
computations

● YAMML harnesses the familiar syntax of C++ and
adds built-in support for matrix creation and
common matrix operations

● Machine learning engineers and architects can use
YAMML to more efficiently and accurately perform
matrix-based computations.

Compiler Architecture

source.yamml

scanner

parser ast

semantic
checking

sast code
generation

LLVM IR External C++
library

notavirus.exe

Language Overview
Core Features

● Static scoping
● Mixed variable declarations and code
● Variable initializers (local and global)
● Explicit & implicit type casting
● Strongly & statically typed

Matrix Functions

Primitives
int, float, str, char, bool

Matrix
[]; [1.0, 2.0]; [1.0; 2.0];
[1.0, 2.0; 3.1, 4.1];

Control Flow Keywords
if, else, while, for, return, continue, break

Arithmetic Operators + Assignment
- + = * / .*

Logical Operators
! && ||

Conditional Operators
< > == != <= >= !=

Comments
/*... */ //

Access M[0,0];

Splice M[:,:]

Element Assignment M[0,0] = 1.0;

Matrix Operations M * M; M .* M; M * 2.0;

Transpose trans(M);

Convolution filter2d(M);

Language Overview: More C-based Features

Imports
#import <file.yamml>

Function Declaration
int main (){

return 0;
}
matrix foo (matrix m){

return m;
}

Control Flow
int i = 0;
for (i ; i < 5; i = i + 1) {

/* something */
}

int i = 0;
while (i < 5) { /* body */ }

int y = 5;
if (x == y) {

/* something */
}
else {

/* something */
}

Implicit Casting
1+1.1 //2.1

Scoping
{
int z;
int a = 5;

{
int a = 7;
a = a + 1;
print(a); //8
}

a = a + 1;
print(a); //6
}

Implementation: Matrix

 [1,2,3]

Struct

mat_m

mat_r

mat_c

Code

int main() {
matrix M = [1,2,3];

}

St
ac

k
H

ea
p

Implementation: Standard Library and Built-ins

Printing Functions
print(int);
printf(float);
printb(boolean);
printStr(str);
printmat(matrix);

Matrix Functions
int height(matrix m);
int width(matrix m);
float sum(matrix m);
float mean(matrix m);
matrix trans(matrix m);
matrix filter2d(matrix m, matrix k);
matrix empty(int r, int c);
matrix imread(str filename);
matrix imwrite(str filename);

Demo: Matrix Operations

Matrix Declaration
matrix M = [1.1, 1.2, 1.3; 1.4, 1.5, 1.6; 1.7, 1.8, 1.9]; //3 row, 3 column matrix. index starts at 0
matrix N = [2.1, 2.2, 2.3; 2.4, 2.5, 2.6; 2.7, 2.8, 2.9];

Accessing Elements
M[1, 2]; //1.8

Arithmetic Operations
M*N //matrix multiplication
M.*N //element-wise multiplication
M./N //element-wise division
M * 1.1 //returns a matrix of floats

Slicing
M[0:1, 1:2]; //returns [1.2, 1.3; 1.5; 1.6]

Demonstration

Testing

● Run all unit tests: ./testall.sh
● Tests:

○ Statements and expressions
○ Scope
○ Matrix operations
○ Functions
○ Standard library functions

● Run individual test:
1. ./yammlc.sh ./tests/test-feature.yamml
2. ./test-feature.exe

Future Directions

● Implement garbage collection

● Additional Matrix Operations
○ Colored Image Manipulation

● Additional Libraries

Questions

