
YAGL
Yet Another Graphing Language

Adam Carpentieri (ac4409)
James Mastran (jam2454)
Jack Hurley (jth2165)
Shvetank Prakash (sp3816)

Final Presentation

Meet The Team

Adam Carpentieri

Manager

James Mastran

Language Guru

Shvetank Prakash

System Architect

Jack Hurley

Tester

Agenda

1. Target Audience & Motivation

2. YAGL In One Slide

3. Compiler Architecture

4. Cool YAGL Components

5. YAGL Standard Library

6. Built-in Functions (C)

7. Who Did What?

8. Demo

9. Q&A

About YAGL: Target Audience & Motivation

● Pervasiveness of graphs in CS ⇒ great candidate

○ fundamental in data structures & algorithms

● Aims to make implementing graphs & algorithms much simpler

● Ubiquitous with numerous applications:

○ social media connections

○ roads that connect cities

○ flights between cities

○ many other mathematical & logical problems

● Statically & Strongly typed, imperative language

● C-like syntax but adopted other languages features we appreciated

YAGL in One Slide

● No main()

● Import standard library for print_graph_lib

● Declaring and initializing graphs

and nodes (more later)

● Adding nodes and edges to graphs

● Scoping

Compiler Architecture

Cool YAGL Features

No main()
● Each file has an implicit main function

○ Entry point

● Implemented via lifting all “orphaned”

statements
○ Statements not within a function

Generic printing capabilities

Arrays

● Different syntax than C
○ int[10] foo vs int foo[10]

● Flexible in ways it can be used and accessed
○ Arrays of all types and any [expr] inside

● LLVM getelementptr understanding key

Scoping

● Each block has his own scope
○ C-like scoping rules

● Variables not just declared at top

● Implemented via symbol tables
○ Semantic Checker & Codegen

pass around a list of symbol
tables

Preprocessing / Importing

● import keyword

○ Python inspiration
○ Acts similar to C’s preprocessing

directives

● File imported is “pasted” to provide

access to all functions and vars

● Done prior to feeding to scanner

.

.

.

Graphs with Nodes & Edges
● Allocates room for empty Graph on the heap

○ Graphs dynamically grow to hold “infinite” nodes

● Allocates and initializes a node with given name

● Adds Node to the team Graph
○ Nodes can be placed in multiple graphs

● Recursively adds Edges to graph with default
weight of 1

More Complex Augmentations
● Complicated example to show variety of graph

operation in single LOC

○ Add Node +

○ Add Edge -> and <-

○ Add Bidirectional Edge <->

Accessors

● Graphs
○ graph.weight[node1, node2]

○ graph.num_nodes

○ graph.num_neighbors[A]

○ graph.node[n]

○ graph.neighbor[A, n]

● Nodes
○ v.name

○ v.curr_dist

○ v.visited

● Strings
○ string.length

YAGL’s Standard Libraries

● stdgraph.ygl
○ Graph copy_graph_lib(Graph g)

○ Graph reverse_graph_lib(Graph g)

○ void print_graph_lib(Graph g)

● stdalgo.ygl
○ void dfs(Graph G, Node vertex, int depth)

○ Node get_first_node_at_depth(Graph G, Node vertex, Node break, int depth)

Used in upcoming demo!

Built-in Functions

● Graph Functionality
○ make_graph(int size)

○ insert_node(struct Graph *, struct Node *)

○ make_node(char *name)

○ get_neighbor(struct Graph *, struct Node *)

○ print_graph(struct Graph *)

○ insert_edge(struct Graph *, struct Node *, int, struct Node *)

Who did what?

● First half through Hello World: Together

● Second half: Distributed Feature Development

○ From scanner → … → codegen → tests

● Weekly meeting to merge code & features

● Process worked very well: all wanted to learn about the entire compiler!

Amazing Demo Time

Buckle up.

Q&A
Thank you!

