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About YAGL: Target Audience & Motivation

● Pervasiveness of graphs in CS ⇒ great candidate

○ fundamental in data structures & algorithms 

● Aims to make implementing graphs & algorithms much simpler

● Ubiquitous with numerous applications: 

○ social media connections 

○ roads that connect cities 

○ flights between cities

○ many other mathematical & logical problems 

● Statically & Strongly typed, imperative language

● C-like syntax but adopted other languages features we appreciated



YAGL in One Slide

● No   main()

● Import standard library for  print_graph_lib

● Declaring and initializing graphs                                                                                                                                                                                                               

and nodes (more later)

● Adding nodes and edges to graphs

● Scoping



Compiler Architecture



Cool YAGL Features



No main()
● Each file has an implicit main function

○ Entry point

● Implemented via lifting all “orphaned” 

statements
○ Statements not within a function 



Generic printing capabilities



Arrays

● Different syntax than C
○ int[10] foo vs int foo[10] 

● Flexible in ways it can be used and accessed
○ Arrays of all types and any [expr] inside

● LLVM getelementptr understanding key



Scoping

● Each block has his own scope
○ C-like scoping rules

● Variables not just declared at top

● Implemented via symbol tables
○ Semantic Checker & Codegen 

pass around a list of symbol 
tables 



Preprocessing / Importing 

● import keyword

○ Python inspiration
○ Acts similar to C’s preprocessing 

directives

● File imported is “pasted” to provide 

access to all functions and vars

● Done prior to feeding to scanner

.

.

.



Graphs with Nodes & Edges
● Allocates room for empty Graph on the heap

○ Graphs dynamically grow to hold “infinite” nodes

● Allocates and initializes a node with given name

● Adds Node to the team Graph
○ Nodes can be placed in multiple graphs

 

● Recursively adds Edges to graph with default 
weight of 1



More Complex Augmentations
● Complicated example to show variety of graph 

operation in single LOC

○ Add Node +

○ Add Edge -> and <-

○ Add Bidirectional Edge <->



Accessors

● Graphs
○ graph.weight[node1, node2]

○ graph.num_nodes

○ graph.num_neighbors[A]

○ graph.node[n]

○ graph.neighbor[A, n]

● Nodes
○ v.name

○ v.curr_dist

○ v.visited

● Strings
○ string.length



YAGL’s Standard Libraries

● stdgraph.ygl
○ Graph copy_graph_lib(Graph g)

○ Graph reverse_graph_lib(Graph g)

○ void print_graph_lib(Graph g)

● stdalgo.ygl
○ void dfs(Graph G, Node vertex, int depth)

○ Node get_first_node_at_depth(Graph G, Node vertex, Node break, int depth)

Used in upcoming demo!





Built-in Functions 

● Graph Functionality
○ make_graph(int size)

○ insert_node(struct Graph *, struct Node *)

○ make_node(char *name)

○ get_neighbor(struct Graph *, struct Node *)

○ print_graph(struct Graph *)

○ insert_edge(struct Graph *, struct Node *, int, struct Node *)



Who did what?

● First half through Hello World: Together

● Second half: Distributed Feature Development 

○ From scanner → … → codegen → tests

● Weekly meeting to merge code & features

● Process worked very well: all wanted to learn about the entire compiler! 



Amazing Demo Time

Buckle up.



Q&A
Thank you!


