
XIRTAM

A Convenient Language for Matrices

Lior Attias
Andrew Peter Yevsey Gorovoy

Bailey Nozomu Hwa
Shida Jing

Annie Wang

Table of Contents
1. Introduction

1.1. C Operations
1.2. Matrix Operations
1.3. Numeric Type
1.4. Autocorrection and Convenient Error Checking

2. Language Tutorial
3. Language Manual

3.1. Lexical Conventions
3.1.1. Comments
3.1.2. Identifiers
3.1.3. Punctuators
3.1.4. Keywords

3.2. Basic Types
3.2.1. Strings
3.2.2. Numeric
3.2.3. Boolean
3.2.4. Xirtam

3.3. Xirtam Expressions
3.3.1. General Overview
3.3.2. Operator Precedence

3.4. Declarations
3.4.1. Local Variables
3.4.2. Global Variables
3.4.3. Functions
3.4.4. Function Calls
3.4.5. Main Function

3.5. Xirtam Matrix Objects
3.5.1. Overview
3.5.2. Xirtam Matrix Operations

3.5.2.1. Print Matrix
3.5.2.2. Basic Operations
3.5.2.3. Get and Set
3.5.2.4. Number of Rows and Columns
3.5.2.5. Autofill
3.5.2.6. Transpose

3.6. Statements & Control Flow
3.6.1. Print Statement
3.6.2. Conditional Statements
3.6.3. For Loop
3.6.4. While Loop

4. Project Plan
4.1. Planning Process

4.2. Specification Process
4.3. Development Process
4.4. Testing Process
4.5. Roles and Responsibilities
4.6. Project Timeline
4.7. Project Log
4.8. Software Development Environment
4.9. Programming Style Guide

5. Architectural Design
6. Test Plan

6.1. Two Representative Programs
6.2. Test Plan
6.3. Automated Testing
6.4. Test Credits
6.5. Test Suite

7. Lessons Learned and Advice for Future Students
7.1. Lior Attias
7.2. Andrew Peter Yevsey Gorovoy
7.3. Bailey Nozomu Hwa
7.4. Shida Jing
7.5. Annie Wang

8. Appendix
8.1. Test Suite
8.2. XIRTAM Compiler Code

1. Introduction
The XIRTAM language is an object-oriented C-style language for manipulating matrices.
Besides matrix declarations and operations, XIRTAM behaves analogously to C. In Xirtam, a
user can create complex matrix-centric algorithms by using a built-in xirtam type, which is a
representation of a matrix. The user of Xirtam ignores implementation details, and instead can
focus on simple linear algebra procedures facilitated by simple instantiation, modification,
augmentation, and algebraic manipulation of matrices.

1.1. C Operations
Xirtam broadly supports simple C operations in C-syntax, including control flow structures of
for-loops, while-loops, and if-else blocks.

1.2. Matrix Operations
Xirtam matrices are built to allow for simple algebraic expressions involving two or more
matrices, such as multiplication of two matrices. In addition, Xirtam supports popular
single-matrix operations such as inversion of matrices.

1.3. Numeric Type
Unlike other matrix-oriented languages, Xirtam supports traditional numeric types of long-floats,
integers, and doubles. Xirtam introduces a new type--num. That is a generic numeric type that
can encompass integers, longs, floats, or doubles. On the backend, num types are converted to
long floats. The num type increases the usability of Xirtam matrices, since the user interface
provides flexibility in having one matrix support multiple basic types. Users need only instantiate
a Xirtam matrix object when they specifically desire to use a matrix in their program.

1.4. Autocorrection and Convenient Error Checking

A unique feature of Xitram is its ability to autocorrect. Only code in main() will be executed
and its return type is num. If the function header is of the incorrect type, Xirtam automatically
corrects the header on the backend. Xirtam will also automatically correct the size of matrices.
For example, if a matrix has a size of a decimal, Xirtam will round down to the nearest whole
number. This is a usability feature in Xirtam, to make things convenient for the user.

Moreover, Xirtam provides error checking for undeclared variables and tells the user which
expression is causing the error.

2. Language Tutorial
Compiling the project:

$ make

If the test script does not run due to “permission denied” upon attempting to run the test files,
you can use the “chmod 777 ./testall.sh” command to change the permissions, then try again.

Please note that your environment must include clang.

If it says “./testall.sh not found”, your system might use CRLF as the end-of-line character, when
in fact it should use LF as the end-of-line character. Your editor might have ways to change this.

Testing a specific test file in the project:

$ make

$./xirtam.native -c ./tests/test-matadd.xirt

XIRTAM Language can be best described as MicroC with matrices, and built in operations on
matrices.

When writing a XIRTAM Language program, the user needs simply to write a program using
MicroC syntax. For novice users, MicroC syntax is exactly C syntax. XIRTAM Language
programs support basic arithmetic on integers, doubles, and long floats. Control flow provided
are for loops, while loops, and if-else statements. Additionally, string print and integer print
functionality is provided. Finally, Xirtam allows users to create their own functions using C-like
syntax.

A user can instantiate a matrix by using the Xirtam type. The Xirtam matrix may be instantiated
as empty, or can be instantiated with a predefined 2-d array representing a matrix, in the
following syntax:

xirtam matrix_2D;

matrix_2D = [[1,2,3],[1,2,2]];

Note that all Xirtam matrices must be represented as 2-D arrays. 1-D matrices (arrays) can be
instantiated with the syntax shown in the matrix_1D object.

Below is a short example of a simple Xirtam program demonstrating some control flow
structures. Please note that Xirtam Language programs begin by executing the contents of the

main function automatically. The main function does not need to be subsequently invoked after
instantiation.

num main(){

bool value;

num one;

num one_point_one;

num seven;

value = true;

if (value){

seven = 7;

one = 1;

one_point_one = 1.1;

printn(seven + one + one_point_one);

else{

print("this is a string print method");

}

function_example(1);

}

void function_example(num x){

num var;num x;num var;num y;num z;

for (var = 1.1; var < 10; var = var + 1){

while(x = -10; x > -1; x = x + 1){

y = -10.0;

z = -(y);

}

}

}

3. Language Manual

3.1. Lexical Conventions
In XIRTAM, newlines, spaces, tabs, and comments as described below are ignored. If the

input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token. XIRTAM
contains the following tokens:

3.1.1. Comments
The characters /* introduce a comment, which terminates with the characters */.

3.1.2. Identifiers
A letter is defined to be one of the 26 English letters, either uppercase or lowercase. A

digit is defined to be one of 0 through 9. An identifier is a sequence of letters and digits, with
which the first character must be a letter. The underscore ‘‘_’’ counts as a letter. Upper and lower
case letters are considered different.

Identifiers are used as corollary labels for variables, functions, and Xirtam matrix objects.
The above definition of identifiers provides restrictions on valid identifiers.

3.1.3. Punctuators
Punctuators in XIRTAM have syntactic and semantic meaning to the compiler but do not,

of themselves, specify an operation that yields a value. Any of the following in it of themselves
are considered as punctuators.

! & * () - + = { } | [] \ ; ' : " < > , . /

3.1.4. Keywords
The following keywords are reserved and cannot be used otherwise.

num

string

bool

xirtam

if

else

for

while

return

true

false

void

3.2. Basic Types

3.2.1. Strings
A string is a sequence of characters surrounded by double quotation marks " , declared

by the keyword string. Double quotation marks are not allowed to appear in a string.

3.2.2. Numeric
A numeric is a number, encompassing integers and floating point numbers. It’s

represented as num and it could be negative, 0, or positive. An operation on two numerics always
returns another numeric. An operation between a numeric and another type has different return
types, depending on the situation.

3.2.3. Boolean
A bool is either the keyword true or the keyword false.

3.2.4. Xirtam
A xirtam is an array of arrays of type num. (see Section 3.5.)

3.3. Xirtam Expressions

3.3.1. General Overview
For non-Xirtam object types (see Section 3.5.), common unary operators such as =, ==,

!=, +, -, *, /, <, >, =<, >=, &&,|| work the same way as they do in C. More
specifically:

● The assignment operator = must have an identifier on the left, and anything on the right.
If the right side is a value, it assigns that value to the identifier. If the right side is an
expression, it evaluates the expression and assigns the value to the identifier. The
assignment is kept within scope.

● ==, != evaluates both sides and returns a bool, analogous to C. == only evaluates to 1 or

true if both the left and right side evaluate to the same logical conclusion. != only

evaluates to 1 or true if left and right side evaluate to opposite values.

● +, -, *, / can be used on numerics to perform arithmetic operations.

● <, >, =<, >= can only be used on numerics, analogous to C.

● &&, || are logical operators used on booleans. It cannot be used on any other type. &&

only evaluates to 1 or true if both the left and right side evaluate to 1 or true. || only

evaluates to 1 or true if either the left and right side evaluate to 1 or true.

3.3.2. Operator Precedence
Operator precedence will take place in the following order (with the exception of

assignment, Xirtam objects which have their own methods for dealing with certain operations as
outlined in Section 3.5.). Within the same level of precedency, they are evaluated from left to
right, and top to down. Parenthesis will override the precedence order, with expressions inside
the parenthesis evaluated first:

1. Boolean negation, negative-sign
2. Multiplication, division
3. Addition, Subtraction
4. Equal not-equal, and other boolean operations
5. Assignment

3.4. Declarations

3.4.1. Local Variables
In a code block inside a function, all local variables that are going to be used need to be

declared at the top of the block, before any control flow and assignments are made. Declarations
are used to give identifiers certain values. To declare a variable, you must specify the type,
followed by the identifier and semicolon. Following the statements of variable declarations,

assignments happen in which you have an identifier followed by =, followed by the value you
wish to assign. The following is the required basic pattern for declaring single variables (< >
aren’t part of the actual code):

<return_type> <function_name>(parameter list) {

<type> <identifier>;

…

<identifier> = <value>;

}

If a value is of type string then the value must be defined in between two double quotes as
stated previously inside a function.

<return_type> <function_name>(parameter list) {

<string> <identifier>;

…
<identifier> = "<value>";

}

If a value is of type num then the value must be either a decimal or integer value inside a
function.

<return_type> <function_name>(parameter list) {

<num> <identifier>;

…

<identifier> = <value>;

}

If a value is of type bool then the value must be either true or false inside a function

<return_type> <function_name>(parameter list) {

<bool> <identifier>;

…
<identifier> = <true or false>;

}

num main(){

string s; num n; bool b;

s = "Hello";

n = 14;

b = true;

}

This program declares a string type identifier s with the value “Hello”, a num type identifier n
with value 14, and a bool type identifier b set to true, respectively.

3.4.2. Global Variables

Global variables can be initialized outside a function, at the top of the file but can only be
assigned in the body of a function.

num global;

num main(){

global = 1;

return global;

}

3.4.3. Functions

XIRTAM supports function declarations in a standard C style. The function declaration must
adhere to the following pattern:

<return_type> <function_name>(parameter list) {

body of the function

}

<return_type> - is the type returned by the function
<function_name> - is the identifier used to reference the function declaration
(parameter list) - is the list of arguments passed to the function. Arguments must take the
following form <type> <identifier>

For example, to write a function that adds two integers in XIRTAM it looks like this:

num foo(num a, num b){

return (a+b);

}

3.4.4. Function Calls

In order to call a function, the function name must be called followed by parentheses
inside num main(). If the function declaration has arguments, then the necessary arguments
identifiers must be passed into the function reference. The following pattern must be followed:

num main(){

function_name() /*if no arguments*/

function_name(parameter list) /*if function declaration takes

arguments*/

}

A function that returns nothing has a declared type void with the exception of an empty
main() as it will always have a return type of num.

3.5. Xirtam Matrix Objects

3.5.1. Overview
To declare a matrix object, you must use the xirtam keyword, followed in order by the

identifier, assignment operator =, by the matrix expression, and finally by the matrix. Matrices
can be expressed using an array of arrays format. The following is the required pattern for a
matric array:

[[<num>,<num>,<num>], [<num>,<num>,<num>], [<num>,<num>,<num>]...]

The Xirtam matrix object can only take numeric type values or expressions that evaluate
to the numeric type. There is no multi-type matrix object.The Xirtam matrix object is not
dynamic. Once an object has been defined with a given number of rows and columns, it can no
longer be changed.

The following is then the required pattern for declaring a Xirtam matrix object:

xirtam <identifier> = new matrix([[<num>,<num>,<num>],

[<num>,<num>,<num>], [<num>,<num>,<num>]...]);

There are also multiple other ways to declare a Xirtam matrix object

xirtam matrix;

matrix = [[1+5, 2, 3], [4, 5, 6], [7, 8, 9]];

matrix = autofill(2, 3, 0); /* a 2 row, 3 column matrix containing

the int value 0. */

3.5.2. Xirtam Matrix Operations

XIRTAM matrices have built-in operations for the basic operations such as elementwise,
addition, multiplication. For equality, we return true for two matrices if (they are of the same size
and they are equal elementwise). XIRTAM also has functions specific to matrix-operations
beyond what is mentioned above:

3.5.2.1. Print Matrix

Printing matrix requires a special function called printm(m) where m is of xirtam
object. The num type values of the matrix will be printed as a float in the shape of the matrix as
shown below:

xirtam m;

m = [[1, 2, 3],[4, 5, 6]];

printm(m);

/*

1.00 2.00 3.00

4.00 5.00 6.00

/*

3.5.2.2. Basic Operations

Basic operations include adding two matrices with matadd(m1, m2) and multiplying
two matrices aka dot product with matmult(m1, m2) where m1 and m2 are xirtam objects as
show in the following. Both matmult and matadd return a new xirtam object, the matrix
representing the result of each operation:

xirtam m1;

xirtam m2;

xirtam m3;

xirtam m4;

m1 = [[1, 2, 3],[4, 5, 6]];

m2 = [[10,11],[20,21],[30,31]];

m3 = matadd(m1, m1);

/* m3 should yield 2x3 matrix:

2.00 4.00 6.00

8.00 10.00 12.00

*/

m4 = matmult(m1, m2);

/* m4 should yield 2x2 matrix:

140.00 146.00

320.00 335.00

*/

3.5.2.3. Get and Set

To get the value of a certain position of a matrix use matget(m1, row_num,
col_num). To replace the value of a certain position in a matrix use matset(m1, row_num,
col_num) where m1 is a xirtam object, row_num is the row number starting from 0 and
col_num is the column number starting from 0. Both matget and matset do not return a new
matrix, but rather modify the matrix passed in as a parameter (here, ‘m’), on the backend.

xirtam m;

num r;

m = [[4, 2], [422, 21], [0.4, 6.2]];

matset(m, 2, 0, -1.233);

r = matget(m, 2, 0);

printn(r); /* 0.4 */

3.5.2.4. Number of Rows and Columns

To get the number of columns of a matrix use getcols(m) and to get the number of
rows of a matrix use getrows(m) where m is a xitram object. Both getcols and getrows

return a num type.

xirtam m;

num row_num;

num col_num;

m = [[1,2,1,3],[1,2,2,3]];

row_num = getrows(m); /* 2 */

row_num = getcols(m); /* 4 */

3.5.2.5. Autofill

autofill(num_of_rows, num_of_cols, value) creates a new matrix of xirtam
type with certain num_of_rows and num_of_cols populated with only this specific num type
value. Autofill returns a new xirtam object. For example:

xirtam m;

m = autofill(3,3,1);

printm(m);

/*

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

/*

3.5.2.6. Transpose

To find the transpose of a matrix use trans(m) where m is a xirtam object. This
function will return a new xirtam object.

xirtam m;

m = [[1, 2], [3, 4]];

printm(trans(m));

/*

1.00 3.00

2.00 4.00

*/

3.6. Statements and Control Flow

3.6.1. Print Statement

printn(num); /* only for numerics */

printm(matrix); /* only for xirtam objects */

3.6.2. Conditional Statements

if (condition1) {

statement(s)

}

else {

statement(s)

}

Statements in the if block is evaluated only if the condition evaluates to true. Otherwise, the
program checks to see if an else or block exists. If not, proceed to the next statement.

3.6.3. For Loop

for (init; condition; increment) {

statement(s);

}

Init is executed first and only once. It allows you to declare and initialize any loop control
variables. Then the condition is evaluated. If it is true, the statement(s) will be evaluated and
afterwards, the increment will happen. This loop is repeated until the condition evaluates to
false.

3.6.4. While Loop

while (condition) {

statement(s);

}

While the condition is true, statement(s) will be executed until the condition becomes false.
Then the line immediately after the while loop will be executed.

4. Project Plan
4.1. Planning Process

We began by selecting each role each member was interested in pursuing. Then, we brainstormed
the overall functionality of our language, answering questions about the types of programs that
our language would facilitate. Due to an overall interest in linear algebra in the group, we began

to develop a language that would make it easier for an end user to perform matrix operations in
linear algebra programs.

We wrote our Language Reference Manual and specified the functionality and syntax of different
parts of our language.

Then, we began writing the syntax of our language using the appropriate files. As we did this, we
iterated on the Language Reference Monitor to match more closely the direction we went with
for the Xirtam language compiler. Finally, we developed the syntactical rules of the language,
and iterated again on the rules, syntax, and functions of our language while staying true to the
main goal of our language-- increased usability of matrix objects.

Throughout this process, we met once a week to discuss our progress from a high level
perspective and make sure we were all staying on track.

4.2. Specification Process

We first created our general requirements via several meetings. We set the general functionality
of Xirtam and brainstormed about a sample program that we would be able to execute using the
Xirtam language.

We then converted the general requirements into a google doc. Once we felt comfortable with the
requirements, we transported the requirements into the Language Reference Manual.

Then, we added details to the LRM to describe our language’s specifications in greater detail. We
also created a test suite to allow for Test Driven Development, which helped connect our abstract
specifications to concrete requirements in code.

Specification was documented in the Language Reference Manual. As we modified the code, we
modified the language reference manual accordingly. In the end, the Language Reference
Manual (section 3 in this report) reflects the final specifications of Xirtam.

4.3. Development Process

Overall development process:
We first created the Parser and Scanner based off of the specifications in our initial
Language Reference Manual. We then created a blank AST, a basic semant and sast, and
a minimal codgen file, and a basic testing suite.

Once we linked up our basic components, we bolstered and modified all the components,
increasing our test suite as we completed new features.

Once we finished coding and testing a compiler to handle basic C functionality, we
focused on implementing the matrix objects in Xirtam.

Development process for each team member:
Every team member followed the same process for development. We each created a
development environment. Some used the docker file and others used a unique virtual
environment. Team members that could not create the testing environment were paired
with team members who could, and paired program together.

Code was written locally, and tested locally. Small changes were pushed directly to the
master branch on Github if checked by multiple people. Larger changes were first
pushed into a branch, and then after a thorough review were pushed to master.

Whenever a new team member pulled from master or a branch, the test suite was re-run
before any modifications were made to ensure that nothing is broken as new functionality
is added.

4.4. Testing Process

We developed an automatic testing using a bash script. As we developed the codegen, the test
suite was in place to prevent regression errors.

4.5. Roles and Responsibilities

Initially, the roles listed in the table below were the initial roles but it became more fluid as
everyone was working on different parts at the same time.

The responsibilities listed in the table below does not mean only that individual was doing all the
work. They just have a more dominant role. Everyone chimed in via pair programming,
debugging as a group, working around different people’s busy schedules and so on.

Team Member Roles Responsibilities/Results

Bailey Nozomu Hwa Co-manager, Co-Architect
(Compiler Design)

Designed the Xirtam
Language, Co-developing the
compiler, testing, codegen
development, semant
development, managing the
product + timeline, ensuring
things get done

Shida Jing Co-manager, Co-Architect
(Compiler Design), Lead
Tester

Co-developing the compiler ,
testing,
debugging/environment
setup, semant development

Lior Attias Language/Tester
(Environment Selection)

Testing, debugging, feature
dev of core xirtam compiler,
compilation and development
environment, development of
matrix features, Final Report

Andrew Peter Yevsey
Gorovoy

Manager/Architect
(Environment Selection)
Test suite lead

Testing, co development of
codegen and semant, test
environment, make,
compilation environment

Annie Wang Manager Final Report, Testing, test
environment, make,
compilation environment,
organizing meetings and
keeping team on track with
deliverables

4.6. Project Timeline

Date Milestone

February 24 Parser, Scanner, Ast version 1

Early March Parser, Scanner, Ast version 2

Mid-march LLVM environment set up

March 24th Hello world milestone

Late march Codgen compiles LLVM code

Early april Codegen compiles control structures, basic
types, special types (num), and print
statements. Produced LLVM files execute
successfully on tests.

Early april Automatic test suite solidified, make file
solidified, increase variety and breadth of
tests in test suite

April 5-7th Added major feature of uninitialized variable
checking and error code debugging for user;

Mid April Implement internal matrix object + testing

Late April Finalize environment, add built in matrix
operations: matget, matset, madadd, matmult,
trans

4.7. Project Log

commit a4729ba47075be4b1fc4c10263fa9b54b4dbe246

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Apr 25 19:34:43 2021 -0500

Added citation

commit 96161c0e01d3162aa77378a1d97ee8360abd0a44

Author: Chimer2017 <apg2165@columbia.edu>

Date: Sun Apr 25 18:40:20 2021 -0400

removed fail test dependent on machince

commit c64237a76ea40047387ca02a81ae5b55a615803b

Author: Chimer2017 <apg2165@columbia.edu>

Date: Sun Apr 25 18:36:01 2021 -0400

added another fail test, small edit on error call in matrix.c file

commit d128b15ea5dbf85856c571d49d83a3d077b0fd29

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Apr 25 15:55:32 2021 -0500

Got rid of the new empty return tests

commit f9f8c34c14c20413bd56068fdd81b4c48ee1ff7b

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Apr 25 15:42:03 2021 -0500

Added a test for non-return type

commit 5e6d376901f5c13638e908da9f288f7e2aca6749

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Apr 25 15:38:24 2021 -0500

Added tests and fail tests for global variable

commit 15f49aead048e39c99143c08c83b1672d2f840e9

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Apr 25 15:06:35 2021 -0500

Added a citation to a test program

commit e439c24be44ef492738c22e2bcffaceeee3873c9

Author: Annie Wang <anwang911@gmail.com>

Date: Sun Apr 25 16:01:52 2021 -0400

deleted unnecessary whitespace

commit c47a775f319ec749020e7483b42144e14eb069f9

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Apr 25 10:07:18 2021 -0500

modified demo program

commit bda8b1a706d1aa4b51502627cf6c99ada7b12220

Author: Chimer2017 <apg2165@columbia.edu>

Date: Sun Apr 25 00:58:11 2021 -0400

added in a number of fail tests

commit 315d997160d868a624147e71bfef7839bee63824

Merge: 0656804 de0a7f1

Author: Chimer2017 <apg2165@columbia.edu>

Date: Sat Apr 24 17:01:00 2021 -0400

git issues

commit 0656804f55d222257630447c2ba6d50416f96d27

Author: Chimer2017 <apg2165@columbia.edu>

Date: Sat Apr 24 16:59:45 2021 -0400

added autofill function

commit de0a7f1e2750d1feaf224a9172de22ce8426b4a4

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Apr 24 15:55:04 2021 -0500

Cleaning and adding citations

commit 6f98d164aacfb7fd981ffe9c92dc80416af227d5

Author: Bailey Hwa <bb339933@gmail.com>

Date: Sat Apr 24 16:35:03 2021 -0400

cleaned code

commit 386b8dc9587aa0fd7eeda06ce0b0cb2845e2c7f1

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Apr 24 15:30:43 2021 -0500

Cleaning the code

commit a8fa58477c58f2938a2e666f0b1ffb49c984913c

Merge: 685cf10 9607492

Author: Chimer2017 <apg2165@columbia.edu>

Date: Sat Apr 24 16:03:12 2021 -0400

git issues

commit 685cf10935f6b8a0810474b048125cb32f0e5100

Author: Chimer2017 <apg2165@columbia.edu>

Date: Sat Apr 24 15:59:49 2021 -0400

Added getrows and getcols functionality to codegen as well as tests to

the test suite. Andrew Gorovoy, Lior Attias

commit 9607492f121ab4cfd281968b5af8b327002cc8f4

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Apr 24 14:42:09 2021 -0500

Getting rid of mod operation

commit ccf29d3c1f8b8c8435d41915b92c7adc902675bd

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Apr 24 13:50:51 2021 -0500

Added a test for transpose

commit 27c365efaa49c1ce918294fec9af37722abaf069

Author: Bailey Hwa <bb339933@gmail.com>

Date: Sat Apr 24 12:38:58 2021 -0400

test transpose: to call in xirtam, use trans(matrix);

commit 326c826ae7b716deae9b8795f81d71cbec429c75

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Apr 24 11:12:39 2021 -0500

Update testall.sh

commit 9426076087011129d3ee96826ffe655ad3f18def

Author: Bailey Hwa <bb339933@gmail.com>

Date: Sat Apr 24 11:33:29 2021 -0400

removed unused scanner tokens

commit f44b6bf860d110246603555a73fde05e9774b850

Author: Bailey Hwa <bb339933@gmail.com>

Date: Sat Apr 24 11:31:43 2021 -0400

added author tags to beginning of files

commit 90fce1c9aa5f625ecf316f9ef162780c21e33ce9

Author: Bailey Hwa <bb339933@gmail.com>

Date: Sat Apr 24 01:16:30 2021 -0400

Readded Shida and Andrew's tests

Re-added Shida and Andrew's tests

commit 6eca99eb64eaa1ea50b1acc024d658c75fc016d7

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 22 17:50:17 2021 -0500

Added a cool program

commit ed78c365fdb497db2c58dc484dd56f886d5e79ab

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 22 16:53:15 2021 -0500

Added more test cases.

commit 2bba48d773fd809a03c8fff5d9a0e7ad904e56e8

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Wed Apr 21 20:26:53 2021 -0500

Added more tests: matrix mult, set, get

Andrew, Bailey, Shida

commit 50f0bd000c1aef83638d686aedd12ea834d795fe

Merge: 37873f8 092de7f

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 21 21:03:47 2021 -0400

Merge branch 'matrix_alt_implementation'

commit 37873f8a07e1469b34f24a10189fcd55dde684c4

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 21 21:01:38 2021 -0400

get rid of faulty tests; merge my new revamped changes;

session: Bailey, Shida, and Andrew;

almost ALL matrix.c from scratch as original implementation

commit 092de7fbe634150d81f1ddc3b01eeace9a618141

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 21 16:21:46 2021 -0400

alternate original implementatino of matrix that fixes segfaults

commit 4f63d2af9b370bbd310a96741aadd8442329a60a

Author: Bailey Hwa <bb339933@gmail.com>

Date: Tue Apr 20 23:46:04 2021 -0400

fixed more row column swaps in matrix.c

commit 45aa084c75599d3cb601866fa283e73056f38717

Merge: e6ccfdc c8c1571

Author: Dkyse <jingshid@grinnell.edu>

Date: Tue Apr 20 21:45:53 2021 -0500

Merge pull request #11 from bnhwa/Attempt-for-mx

Matrix add now works

commit c8c15717740e65d970404fe47d0e7a65d3ef316d

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Apr 20 21:45:10 2021 -0500

Matrix add now works

commit e6ccfdc0030672407b2a05799baf13a33d8f002c

Merge: dc2d71f dff9152

Author: Dkyse <jingshid@grinnell.edu>

Date: Tue Apr 20 21:23:16 2021 -0500

Merge pull request #10 from bnhwa/Attempt-for-mx

Reverted semant to Bailey's version. Matrix print and declaration

works.

commit dff9152ad959887f94c22a4a1bfabb4a4038c30b

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Apr 20 21:21:57 2021 -0500

Printm and declaration.

Reverted semant back to bailey's version.

Lior

Bailey

Andrew

Shida

commit 72e357303a352be9163f424799aa3df30adb64a9

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Apr 20 21:05:30 2021 -0500

added matrix addition and multiplication, needs debug

commit dc2d71f72aa2205526af94609cd28bd54ec84435

Author: Lior Attias <lattias@email.arizona.edu>

Date: Tue Apr 20 17:32:09 2021 -0700

fixing tests

fixing tests

commit cc9609f6346a278dd328776eca427582437798a9

Author: Lior Attias <lattias@email.arizona.edu>

Date: Tue Apr 20 17:04:46 2021 -0700

Create test-matrix5.xirt

commit dbb8e75e1284d1d6e9fd43a4ad8ec3b913cbbe92

Author: Lior Attias <lattias@email.arizona.edu>

Date: Tue Apr 20 17:02:59 2021 -0700

Create test-matrix4.xirt

commit fd512469e72ebbdff468de96c286e5e85df55c52

Author: Lior Attias <lattias@email.arizona.edu>

Date: Tue Apr 20 16:50:32 2021 -0700

Create test-matrix3.xirt

testing main, call funct, invoke matrix op

commit 5bed35e1faf2cb385cdd994e0052e9a7957e934f

Author: Lior Attias <lattias@email.arizona.edu>

Date: Tue Apr 20 16:49:06 2021 -0700

Create test-matrix2.xirt

commit a83fb2fc0682cc1a855b1e8eb97607f3c2fd9300

Author: Lior Attias <lattias@email.arizona.edu>

Date: Tue Apr 20 16:45:00 2021 -0700

added matrix initial test

commit 35067b0b96208cabb24698ce414b492c349f45c9

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 15 14:49:47 2021 -0500

Made it compile

commit 021bf340d5be3f6e3e196624ef4f5a0e4d9c8ace

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Wed Apr 14 19:12:16 2021 -0500

bug when compiling

commit 65874083da92dd73a25d4976e1f92d693402bcef

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Apr 13 16:51:54 2021 -0500

debugging the .c file

commit 79d5f207587c21a1a4570cd51a3a0e81460d71f8

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Mon Apr 12 16:46:48 2021 -0500

implementing matrix print

commit 678b8caad5093037e7f08168aed1d0390c8ad0e8

Merge: dd5a5ad 64e674b

Author: Dkyse <jingshid@grinnell.edu>

Date: Fri Apr 9 17:49:50 2021 -0500

Merge pull request #9 from bnhwa/debug-semant-and-add-matrix-to-codegen

Fixed warnings in semant. Added dimensions to matrices.

commit 64e674b9834cae78215674bcc0064997b49f2f88

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Apr 9 17:47:53 2021 -0500

Continued

commit dd5a5ad43e88e854d0713f8f276b23cd4146f0f5

Merge: 6f61091 db6d8ac

Author: Dkyse <jingshid@grinnell.edu>

Date: Fri Apr 9 08:28:49 2021 -0500

Merge pull request #8 from bnhwa/debug-semant-and-add-matrix-to-codegen

Debug semant

commit db6d8ac24872ff12becea9a60f47c57375c292f4

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Apr 9 08:28:18 2021 -0500

delete test log

commit 3c21c192e6827b71d1bc78dc6ff38ba8aedf322d

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 8 16:48:04 2021 -0500

debug semant

1. Int type not accounted for in codegen. Added it so that it treats

Int as Num

2. Deleted the exponent function in codegen

3. Cannot fix error in semant.ml regarding init_check_helper

4.

commit 6f61091c364226acaffaf6f610c11d40d1bf3b1e

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 19:36:21 2021 -0400

Modified readme, added xirtam logo which I designed

commit 777c36fdc22b8a3d6b2694b7172686001f3b321d

Merge: cdfcd1c be8aa78

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 14:45:14 2021 -0400

Merge branch 'master' of https://github.com/bnhwa/PLT-Project

commit cdfcd1ca5bcc4c81337e0699ed8286c06dec4f96

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 14:45:10 2021 -0400

seemingly fixed print issue with call semant checking

commit be8aa78e899053a29c9a447bb2068b4696b0fce8

Author: Chimer2017 <apg2165@columbia.edu>

Date: Wed Apr 7 18:39:34 2021 +0000

fail-tests

commit 99fa42222c4d9a33ab52123ba1d1b751e4ff56a4

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 14:33:11 2021 -0400

i think i fixed the negative issue

commit 8e65d21a63cc6bc8ab6eab22f10d456eed5563a0

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 13:51:33 2021 -0400

added uninitialized variable check for returns

commit d77473c932aa93da0602062e97fae1fa1d03f047

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 13:44:42 2021 -0400

updated todo and cleaned code for semant regarding uninitialized

variable checks

commit 367630a76151256adf5eb27cf802e8687fd22a55

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 13:41:20 2021 -0400

added uninitialized var checking for matrix elements

commit e008e9be9dc868d9f8af47a55c25756e4071b8c6

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 13:35:14 2021 -0400

fixed uninitialized check, works for everything now!!!!!!!

commit 80a6f954e3db782e02338b0a347a4923c88b890a

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 13:13:29 2021 -0400

added init checks for ifs loops

commit f76be11dffa9798ac03d37f5cc0ef9e4b9733715

Author: Bailey Hwa <bb339933@gmail.com>

Date: Wed Apr 7 12:55:28 2021 -0400

added initialization type checking for variables (unfinished)

commit 98a83937492f06564754ed9c08607ede8b69b1d3

Author: Bailey Hwa <bb339933@gmail.com>

Date: Tue Apr 6 22:43:31 2021 -0400

quick error code fix on staggered columns

commit fba8adc5c7456821e0990d76c85e9ed6b616c339

Author: Bailey Hwa <bb339933@gmail.com>

Date: Tue Apr 6 22:40:08 2021 -0400

Added semantic checking for matrices, including checks for expression

types within matrices, staggered rows, and removed continue

commit 31379f0d97e1a4df9c791a42feeca099d3fa0fc1

Author: Bailey <bb339933@gmail.com>

Date: Mon Apr 5 17:11:28 2021 -0400

added matrix stuff into parser and ast

commit 7f8bbb8dd5476d1b132d09fc67e080aafcae827b

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Apr 2 20:32:08 2021 -0500

Added tests for functions and whiles

ignoring mod for now.

commit 7d6976798cb3c8f57729cf9886aef16d905e13a5

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Apr 2 20:11:16 2021 -0500

make tests for if and while

commit 410eb1efad6ac5039b7a127d26491424581f7a22

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Apr 2 18:10:45 2021 -0500

updated tests for if and unary operators

while and for loops don't work

commit 6809cf6c7c94c4e1fa4a4140acd781ca94aa26cb

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Apr 2 17:13:53 2021 -0500

File extension fixed

commit b720a326202a1818662993198df4b7f5629cb85d

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Apr 2 17:06:37 2021 -0500

Added arithmetic test 1/2

commit 47bb33d9efc5711af085ab43ddabb27d134c6d04

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 16:33:21 2021 -0400

re added the mod operator for nums

commit 1862a635f2346f019ddca0d457d1ecd4547b2a91

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 16:08:58 2021 -0400

added readme.md

commit 6a2a9771eacaf0d27051825a852236caf688616d

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 16:06:51 2021 -0400

modified Readme with concurrent info

commit f6dea793e38be8c2d3a2f3f6be3622abb1861378

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 16:00:45 2021 -0400

made semant return error if user tries to return something from the

main function

commit d28cabf40317a34b36dec34b3eda7f6704f388ab

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 15:34:18 2021 -0400

updated todo, Entry point is main is always made to be hidden int type,

decl/return is same type

commit 79213f6fd3b4a1eba669ad3c44a042b5433e23e6

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 15:19:56 2021 -0400

fix return type for int main

commit 657b156a8d5ab2fc01de3e51766b544a10578131

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 14:53:34 2021 -0400

potential int return type mismatch fix

commit cfa77ed103cc7c7164109b1d520059969a9b38ce

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 14:46:45 2021 -0400

printn fix

commit 7e59c9cba7c3393637fa2262ea8b1121fe9f7208

Author: Bailey <bb339933@gmail.com>

Date: Fri Apr 2 14:41:18 2021 -0400

added hidden int type that is only used for function main, whatever

type main is declared as, in semant it will become int type so llvm has

proper entry

commit 118d70e82cbcf1c0a2db21da2b4b2510962e8bd1

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 1 22:00:14 2021 -0500

Update TODO.txt

commit 6ade4fb6a07788176d6033084e7e4aedd62c3edc

Author: lattias <lattias@email.arizona.edu>

Date: Thu Apr 1 21:43:05 2021 +0000

remove printbig files and reflect this change in make and testall

commit c13a277bc793bb84bcb98cb2e8da903e978e689f

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 1 15:41:00 2021 -0500

attempt to fix printn

commit f788302d525bd4f1b742c6b68cd2e2fdc57f2952

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 1 15:36:29 2021 -0500

Modified quotation mark

commit 7ced48032c3e9fdd9ac9c55aecf6e31fd9e50500

Merge: 745e102 df7cb8b

Author: Bailey <bb339933@gmail.com>

Date: Thu Apr 1 15:52:15 2021 -0400

Merge branch 'master' of https://github.com/bnhwa/PLT-Project into

master

commit 745e102dfafe8fbae39fe18a224e5d9c756c4805

Author: Bailey <bb339933@gmail.com>

Date: Thu Apr 1 15:51:56 2021 -0400

codgegen works for variable assignment/reassignment,print numerics,

function declaration, llvm modules output fine, we should physically run

the llvm module

commit df7cb8b977bd546527b979f2bc5506f0fe57c134

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 1 14:49:53 2021 -0500

Delete printbig.o

commit dc7949ccc344f82d4fab7b7e50454171a95d11a7

Author: Bailey <bb339933@gmail.com>

Date: Thu Apr 1 15:40:26 2021 -0400

add strings in codegen, make llvm e1 e2 syntax compact

commit 65dccde40b41c643cd26c3e64e74e94fc5d24dbb

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 1 14:33:52 2021 -0500

Fixed a quotation mark

commit e97cad630248d4bed38d903d6b3261ffecb14f99

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Thu Apr 1 14:23:26 2021 -0500

Added TODO list and temporarily moved test files until makefile works.

commit 28bb5cd9383cb15a6721fc90cef2142a59f57d34

Author: Annie Wang <anwang911@gmail.com>

Date: Wed Mar 31 23:49:08 2021 -0400

resolved error testall.sh

commit b5a2863c38c0b35ae4d5b7812c5d0868dd1a4623

Author: Annie Wang <anwang911@gmail.com>

Date: Wed Mar 31 23:39:38 2021 -0400

automated testing and added test cases

commit de587ed2b541c41432e11360b9f5c76c1480d408

Merge: a203fd7 9b7c0c7

Author: Dkyse <jingshid@grinnell.edu>

Date: Tue Mar 30 14:37:06 2021 -0500

Merge pull request #7 from bnhwa/fix-codegen

Fix codegen

commit 9b7c0c78d4808071404ff453805bb6569de9e0aa

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Mon Mar 29 21:10:12 2021 -0500

codegen conti

commit cde8e6a53b2b7795ce04711eccbbc244a97195ef

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Mon Mar 29 20:58:47 2021 -0500

Fixing codegen

1. we redefined the pointer type in codegen

2. We are defining the i32 type for the printf to return

3. Fixed SNumLit because it is not a string in our code but it is a

string in the microc.

4. Commented out mod and exp for now in ast and codegen.

commit a203fd774781c16788d5f7e1bf4680b792a78775

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Mon Mar 29 18:17:20 2021 -0500

IMPORTANT: added tags file

commit 9b3e0bb6ea9a6f2075f908ee17403e122aca44fd

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 22:53:29 2021 -0400

name fix for greater operator in codegen

commit a8e88dd04b9408d21b34a358d5e53c565dd95645

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Mar 28 21:02:16 2021 -0500

Trying to run the program

commit 2a4527eab2089abdf8439fdde7f32c1365c43bd0

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 21:23:56 2021 -0400

fixed the parser for mod and exp

commit ca357db9b960cc0e1a89a7ee6bf50254ee8b6786

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Mar 28 20:17:30 2021 -0500

exp and printf

commit 9969dc94b27c3167bccb2eedbe13848025c17af0

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Mar 28 20:16:28 2021 -0500

codegen fix

commit e2a31b72f972bb71cc2dd5afdc1f3ef194546489

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 21:01:59 2021 -0400

small fix for power function llvm

commit 645c24d7eb416a75609871ac7d3d822ef8603420

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 20:58:31 2021 -0400

get rid of A.float because we are using A.Num

commit 3c2c176ae91f10d870181df65db1b249f890a41a

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 20:56:58 2021 -0400

added statements in codegen and SBinops for specific datatypes please

check this in case

commit faa7842dce15eeeaed1385392af54a52de66cb7f

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 20:08:46 2021 -0400

added exp and mod operators, for codegen since we are using nums

basically floats, look at LLVM const_frem which should do the trick for mod

for power look further into llvm manual

commit 55afb68d8e215ab99aea47fd27950609004c0813

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 19:38:04 2021 -0400

comment out fix in parser

commit 8492c8f538895e7889d3430a2d0213e891f4df78

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 19:33:57 2021 -0400

fixed issue with if statement in parser, see new hello txt demo

commit 83a0f606ef186104c54e79c1a05c0060a02b69e8

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 19:05:14 2021 -0400

added and tested semants/ast/sast/ for binary operators

commit b9eec12ca43d5de62932cc2b02ff7c31ccc09f69

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 18:56:22 2021 -0400

added and tested semants/ast/sast for unary operators

commit 80f9a835d082cd333e17eaa86f38f5f34ac201b6

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 18:43:20 2021 -0400

small change in duplicate arg/local error message

commit d2391e1caccd32d4b715525275f78183e0933977

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 18:40:50 2021 -0400

added in function_check checking for duplicate local and arg variables

commit 4ff831a5b466d62bebbb3829b430a4e9d35b4792

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 18:35:02 2021 -0400

added string compatability with semant

commit 5ca35ee30e3ffcd216ce49efcbc0cb52e442544b

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 28 16:39:57 2021 -0400

more codegen additions to handle var dec/formals and 3rd optional

assignment value

commit 218fc4f5183b5c90cc024a76f0a6ac17fbad98fa

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Mar 28 14:44:12 2021 -0500

codegen still needs statements

commit 40d2b5fd6e9cfcec5e2c43b81e7743bfa336c5af

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Mar 27 21:37:08 2021 -0500

codegen continued

commit 94a97678a022416c77de5365ff60c0e1aee3588d

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Mar 27 18:46:12 2021 -0500

Starting on codegen

commit 3406313a30f39f770851baa38c16916387491603

Author: Bailey <bb339933@gmail.com>

Date: Fri Mar 26 22:16:53 2021 -0400

revamped structure of code, parser now follows suit with microc style

declarations, fixed sast bindings, restructured code to be more simple,

function delclaration and locals now work great with semant.

commit 94d13c0e2dbc700ff6b54dee6a534461e55a4f91

Merge: d4e0bc5 c7b0222

Author: Bailey <bb339933@gmail.com>

Date: Fri Mar 26 21:35:43 2021 -0400

Merge branch 'master' of https://github.com/bnhwa/PLT-Project into

master

commit d4e0bc5009639daae9c1c88823d55014741d5e05

Author: Bailey <bb339933@gmail.com>

Date: Fri Mar 26 21:34:40 2021 -0400

bailey beta test version of project

commit c7b02229fe2f13afd0b717cc9e76cfb14dadeed7

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Wed Mar 24 21:06:22 2021 -0500

Added readme

commit 8f014dc01697d65f4653f724d41bac8464ec591d

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 24 21:08:09 2021 -0400

delete alt old version scanner

commit 71d7406827bb2f5ad7b914a70499ac23610a8fe3

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 24 21:06:50 2021 -0400

remove extraneous files

commit 6505e30b1b6b5fe0cee4c7affa373e37751b0843

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 24 19:54:14 2021 -0400

new helloworld

commit 41dafe1a9b7f5e1ccba5a0a88741577299cfa779

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 24 19:35:50 2021 -0400

sast fix

commit 5e01d48cf9e09f01a35fb2ec1eecbd6a91009ea4

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 24 15:52:00 2021 -0400

fixed!

commit bed755b9a59b699818c709e9a64b0a8d629120e1

Merge: f437013 0d62b97

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 24 15:50:33 2021 -0400

asdf

commit f437013ef8de0cc99ba1d94c7a2b387c409dcf91

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 24 15:49:09 2021 -0400

pretty print working now!!

commit 0d62b97cdfcbcb8f5913ec222eb9c11f0a1a27b0

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Wed Mar 24 14:08:41 2021 -0500

Added debug code in parser

commit c2616bccd9036bec7c823c976178e579fbe78889

Merge: 20d04aa c5066e3

Author: Dkyse <jingshid@grinnell.edu>

Date: Tue Mar 23 21:32:31 2021 -0500

Merge pull request #6 from bnhwa/Fix-semant

Fix semant

commit c5066e3aad7623b481205bc05e07791613c2c86d

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Mar 23 21:32:15 2021 -0500

Continued

commit 3570106e8829e2ffef554816a3724daa802a3f02

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Mar 23 21:06:22 2021 -0500

Testing the program

commit 20d04aa235b0307eb160ebb4f935ef9ed85d2af6

Merge: c9dca36 0ad3179

Author: Dkyse <jingshid@grinnell.edu>

Date: Tue Mar 23 20:11:01 2021 -0500

Merge pull request #5 from bnhwa/Fixing-AST

Fixing ast and semant, in progress

commit 0ad317981b3141e6ac8a6856b55c2c95a6ee7654

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Mar 23 20:10:34 2021 -0500

Fixing semant

commit 32419540b8cdb7f762085f0d861a156d15f310e7

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Mar 23 20:02:59 2021 -0500

In progress

commit a38d3cd9ddaba068a570ae2d1e9c636dd0107a6e

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Mar 21 20:53:32 2021 -0500

Trying to debug sast

commit ea4874e716c7fd0818daee79ed967bf3198d1ded

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sun Mar 21 20:21:38 2021 -0500

Made xirtam.ml copy of microC

commit d405c4974aa9e856c3685fea260a7cc15aa882d5

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Sat Mar 20 22:26:43 2021 -0500

Semant and Sast untested

commit 79bd01bee281cbc8c24ab2187e8df9dd499fd8d5

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Mar 19 22:06:06 2021 -0500

Fixed ast, I think.......

commit 851660c0a0dde30e00f251ddb4002256221c167c

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Mar 19 21:15:34 2021 -0500

Fixing AST

1. Deleted Mod and Exponent operation

2. Commented out XirtamDec_lit_ and XirtamDec_rc_

commit c9dca369235a0e4b19f56cbb2ae33599e2b686d3

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Fri Mar 19 12:34:17 2021 -0500

Debugging AST

commit c04b0665d46e063917acbbb618a4698e9295c2ac

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 17 20:42:20 2021 -0400

reorder ast operators akin to microc

commit c6b6881a4af0ff22f58921e46a0387013a21a934

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 17 20:39:05 2021 -0400

more astAlt corrections

commit de9dac427a88289e34672534b9e57315ca4ce32c

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 17 19:45:56 2021 -0400

minor fix

commit 7805f78710a14086025291015ad22fd26a16db58

Author: Bailey <bb339933@gmail.com>

Date: Wed Mar 17 19:42:39 2021 -0400

scanner fix, ast matrix declaration print string error handling

implemented

commit ae10bf4263a46ee3d8c693a68f21e0cc58964858

Author: Bailey <bb339933@gmail.com>

Date: Tue Mar 16 21:01:24 2021 -0400

minor ast edits

commit cc82eebafc824ded8ca07587f65eb3c84437fad3

Author: Bailey <bb339933@gmail.com>

Date: Tue Mar 16 20:55:48 2021 -0400

parser and ast, caution, ast isnt finished

commit 010c970d74b941130361e874a3fb48bb110c6aa2

Author: Bailey <bb339933@gmail.com>

Date: Tue Mar 16 15:08:09 2021 -0400

parser fix

commit eef637ce225c8e200f25c1c836820801ecedc2b8

Merge: 4a98250 db95971

Author: AndrewG <34191548+Chimer2017@users.noreply.github.com>

Date: Mon Mar 15 23:20:20 2021 -0600

Merge pull request #4 from bnhwa/andrew_feature

Andrew feature

commit 4a98250b78e43c5385981f5bbd80363294ea7aff

Merge: 0f4a449 648b40c

Author: Dkyse <jingshid@grinnell.edu>

Date: Tue Mar 16 00:20:01 2021 -0500

Merge pull request #3 from bnhwa/hello_world_in_progress

Helloworld stuck at bug

commit 648b40cd89ef0c5bba1fc2328ec4ead37e1bdf3d

Author: ShidaJingTetra <jingshid@grinnell.edu>

Date: Tue Mar 16 00:19:45 2021 -0500

Helloworld stuck at bug

commit db959712a4aa8d76992ff5b19d6bd0f575955bcb

Author: Andrew Gorovoy <andrewgroovy@gmail.com>

Date: Mon Mar 15 23:18:26 2021 -0600

added test folder and script

commit 0f4a449221b50b8cbbc7481b3fb0a7f25f023248

Merge: cc3a71e 36e8e0b

Author: Dkyse <jingshid@grinnell.edu>

Date: Mon Mar 15 22:58:28 2021 -0500

Merge pull request #2 from bnhwa/hello_world_shida

Hello world in progress

commit 36e8e0b5b161168b8baa520184066c5abe6ff081

Merge: 6348f4c cc3a71e

Author: Dkyse <jingshid@grinnell.edu>

Date: Mon Mar 15 22:58:16 2021 -0500

Merge branch 'master' into hello_world_shida

commit 6348f4c62b65946113b569811d77f643b0a56d58

Author: ShidaJingTetra <sjing@tetrascience.com>

Date: Mon Mar 15 22:55:03 2021 -0500

helloworld in progress

commit 17020b023da9f175b78ffed8020476e06fff11b9

Author: ShidaJingTetra <sjing@tetrascience.com>

Date: Mon Mar 15 22:44:24 2021 -0500

helloworld in progress

commit cc3a71ef9b32286537946fdf68cd7da314b426b4

Author: Bailey <bb339933@gmail.com>

Date: Mon Mar 15 19:24:20 2021 -0400

new changes

commit 79bd62cc9c67236591a57458b7fe8285eb0166b6

Author: Andrew Gorovoy <andrewgroovy@gmail.com>

Date: Mon Mar 15 16:26:43 2021 -0600

added testfile on personal feature branch

commit d091b646c4039265beee2cd27ffe81d855a6176b

Author: Bailey <bb339933@gmail.com>

Date: Mon Mar 15 15:39:11 2021 -0400

modify helloworld txt to match xirtam syntax

commit 2e4578e872518babca82a4e640763a9ce1eef952

Author: Bailey <bb339933@gmail.com>

Date: Mon Mar 15 13:18:09 2021 -0400

xirtam functions added to parseralt and scanner alt

commit b6cfe47454e7a6385bf1069500ce2736275a86b8

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 14 21:06:40 2021 -0400

redesigned scanner and parser completely, 0 shift reduce errors

commit 2bd3ea0df4a97922d7f266ffa8614bf9517f3f57

Author: Bailey <bb339933@gmail.com>

Date: Sun Mar 14 18:17:37 2021 -0400

alt files

commit 6b047e32a41420bcd7fa017595cbb99a4d42426d

Merge: fbc4cc9 0a4e706

Author: Dkyse <jingshid@grinnell.edu>

Date: Sun Mar 14 15:39:00 2021 -0500

Merge pull request #1 from bnhwa/hello_world_shida

Hello world initialization

commit 0a4e706dcb149fe52b76ad15f57300dc1ce9940d

Author: ShidaJingTetra <sjing@tetrascience.com>

Date: Sun Mar 14 15:38:38 2021 -0500

Initialization on helloworld

commit 248f85e10e55014825f2abaa469a4fed0cf51815

Author: ShidaJingTetra <sjing@tetrascience.com>

Date: Thu Mar 11 19:18:39 2021 -0600

Sample hello-world program

commit fbc4cc9f96f9da90d884c8c0a6c9966d1a7a42fa

Author: Bailey <bb339933@gmail.com>

Date: Thu Mar 11 20:10:11 2021 -0500

initial commit

4.8. Software Development Environment

● Docker environment used to compile LLVM code.
● Internal software development done in Visual Studio Code and Sublime.
● Source Control done via Github for code and Google Drive for documents.

List of dependencies:
- Clang
- LLVM 10
- Python 2.7
- Cmake
- Opam
- Ocaml
- Menhir
- Pkg-config
- aspcud
- ca-certificates
- LLVM 10-dev

4.9. Programming Style Guide

Utility functions
For functions that are used multiple times, a utility function will be implemented.
Additionally, for functions that are unreasonably long, a utility function will be
implemented for added readability.

Commenting
All comments were set as block comments or individual lines describing functionality to
ensure that all working or reviewing the code understands what is going on. Block
comments are indented to be in a single column, and spaces separate the start and end.
For example:

/* one line comment */

/* Multi

Line

Comment */

Parser
Formatting on parser is meant to enhance readability. Every new pattern is separated by a
double new line. The first rule does not contain a bar, all remaining rules do contain a bar.
The rules are left-aligned to the start of the first character. The actions are left-aligned to
the start of the leftmost curly bracket. If there is no pattern for a rule, then a comment
reading “nothing” is included. When there is no action, “Null” is set as the function to
call. There is no spacing within the curly brackets. For example:

rule_one:

Pattern_one {functionA}

|Pattern_2 {functionB}

rule_two:

/* nothing */ {Null}

|Pattern_one {functionA}

|Pattern_two {functionB}

AST conventions
All AST types will be lowercase in naming. Names of each type are capitalized. For
example:

type type_one:

Name_one of other_type

| Name_two of different_type

Ocaml conventions
All Ocaml will be aligned to clearly indicate the nesting of ‘let’ and ‘in’.
The declarations of ‘let’ and ‘in’ will be left aligned. For multiple rules, the two will be
on separate lines. For small rules, they can be on one line.

Comments are used both within and outside of ‘let’ and ‘in’ blocks to clarify ambiguity.

For example:

let value =

/* many lines of rules */

in /* continue code */

let value = ... in ...

5. Architectural Design
A Xirtam language program goes through several steps. At the end of the compilation process,
the Xirtam language program has been translated into LLVM code. This LLVM code is
translated further down into another LLVM compiler (abstracted away from this project), which
finally executes the LLVM translation of the Xirtam Language Program.

First, the Xirtam Language Program is compiled via Xirtam.native. The Xirtam Language
Program is also compiled with matrix.c, a c-file that is used to implement complex matrix
operations.

Xirtam.native first builds the AST tree, which contains the syntax rules.

The AST tree is built by having scanner first convert the XLP into tokens, and then having parser
define the possible combinations of these tokens.

If the AST tree is built correctly using the rules in parser and the token defined in scanner, then
the XLP is syntactically correct.

Next, the Xirtam.native builds the SAST tree, which is the semantically checked tree. The
semant consumes the AST tree and checks if it is semantically correct. If so, it outputs the SAST
tree, which is the semantically correct tree representation of the XLP. Once this stage is passed,
codgen consumes the SAST tree and converts the SAST tree into LLVM code.

In the last step, the LLVM code is executed by an LLVM compiler on the backend. Finally, a .out
file is generated which is the output of the LLVM code.

At the end, the LLVM code logically matches the XLP the user provided to be executed. Below
is a diagram.

Figure 1. Code flow -- big picture

An original Parser, Scanner, and AST were created by Lior and Shida. Bailey then from scratch,
created a functional Parser, Scanner, and AST. Bailey and Shida then expanded and tested all of
these files, creating a Semant file. This involved Bailey and Shida creating a xirtam.native file
which was used to test the ast, sast, and semant files which were created in such order. Annie and
Andrew worked to create a makefile to compile the program. Lior, Annie, and Andrew worked
on creating an environment (docker) that could be used to compile this program. With the

environment set up, the group worked together to debug the files. As the environment was being
solidified (including make files and test environment), Bailey and Shida focused their efforts on
starting a codegen file. With this direction, Bailey, Shida, and Andrew implemented and tested
the codgegen and matrix.c file. For the testing suite, Shida, Lior, Andrew, and Annie worked to
debug the codegen file so that it could build LLVM code. Shida, Lior, Annie, and Andrew
focused on running this code and creating the test suite that would actually execute the LLVM
code.

Once a very simple empty main function was able to be compiled, the project quickly
transformed as the most difficult parts-- the mechanics of getting LLVM to compile, having the
correct environment, having all the required files work together without bugs, were ironed out.
Bailey and Shida designed and implemented basic types, algebraic types, and function
declaration types. Andrew, Lior, and Annie supported debugging and feature development via
pair programming. Finally, the Xirtam matrix types were created and implemented procedurally
from parser, ast,sast/semant, and finally in codgen with the team supporting pair-programming
and getting the code to compile, run, and test correctly.

The final step of this process was to get the “fun” features of Xirtam completed. The entire team
worked together to get the final built-in features of Xirtam completed. The core functionality of
the built-ins resided in matrix.c, which was linked into the project via clang.

When we first started this project we had set labels for each team member. However, as the
project progressed every team member contributed to overcome difficulties with the code, from
providing the necessary environment to test on, debugging code, defining the direction and code
structures, and ironing out language details and implementation best practices questions. We
learned that in designing a language, every role and function informs the other.

5.1. Group member credit

Please see appendix 9: XIRTAM COMPILER CODE, for specific credit on each file.

6. Test Plan

6.1. Two Representative Programs

Program one:
This is a simple program in which a matrix, m, is instantiated with both integer and decimal
values. On the backend, these are converted to ‘num’ types.

The built-in function matget returns the specific value (type is num) at the x,y coordinate given.
Here, it will return the value located at 2,0 of matrix m.

Program two:
This program illustrates the matmult built in function. Here, two matrices, m and n, are
initialized. Note that it is not necessary to pre-define the size of the matrices before initialization.
Matmult will multiply the two matrices, m and n. Matmult returns a matrix “ret” representing
the resultant matrix. Finally, printm prints the resultant matrix (‘ret’) in a human readable
format.

6.2. Test Plan
Chronologically

1. Hello World executable

a. Test an simplistic program to establish end to end functionality
2. Test suite

a. Basic type invocations
b. Printing
c. Matrix creation and operations
d. Arithmetic operations on numbers
e. Error handling

With each modification to the compiler, the test suite was run. The following shows the required
output in order to succeed at all the tests:

./testall.sh
test-arithmetic-op...OK
test-assignment...OK
test-autofill...OK
test-cool-program-2...OK
test-cool-program...OK
test-determinant...OK
test-emptymain...OK
test-for-c...OK
test-func-dec...OK
test-getcols...OK
test-getrows...OK
test-global-variable...OK
test-if...OK
test-matadd-2...OK
test-matadd-3...OK
test-matadd...OK
test-matget...OK
test-matmult-2...OK
test-matmult...OK
test-matset...OK
test-print-matrix1...OK
test-print-matrix2...OK
test-printn...OK
test-temp...OK
test-transpose...OK
test-unary-and-bool-op...OK
test-while-c...OK
test-while...OK

fail-add1...OK
fail-add2...OK
fail-arithmetic-op...OK
fail-assign1...OK
fail-assign2...OK
fail-emptymat...OK
fail-func-arg...OK
fail-func-arg2...OK
fail-func-dec...OK
fail-getcols...OK
fail-getrows...OK
fail-global-variable...OK
fail-if...OK
fail-intmain...OK
fail-mult1...OK
fail-mult2...OK
fail-uninit-var-usage...OK
fail-while...OK
fail-while2...OK

6.3. Automated Testing
Created bash file called testall.sh to run test suite automatically (see Appendix for the
actual file)

6.4. Testing Credit
The test suite was written by Andrew Gorovoy, Annie Wang and Lior Attias. The test
cases, both test and fail, were chosen to demonstrate the proper functionality as well as
condition for failure for every added feature of our language. Annie Wang and Andrew
Gorovoy set up the testing script and wrote the initial tests. Shida Jing, Bailey Hwa, and
Lior Attias added other test files throughout the semester.

6.5. Test suite -- see Appendix 8
Actual tests code are in the Appendix 8: TEST SUITE

7. Lessons Learned and Advice for Future Students

7.1. Lior Attias

Overall, this project was an interesting challenge. While it may seem that we only built a
compiler, I believe it was a project that actually helped us think about the many facets of
software engineering. To succeed in this project, we could not only make a test suite and start
coding. With every decision, we closely considered the design of the overall architecture, the
relationships between each component, the data flow we wanted to ensure, and the usability we
wanted to provide through our language.

Overall, I enjoyed the entire process. I think one of my favorite aspects was the large scale nature
of the compiler, in that it encompassed multiple pieces each of which had a very specific role.
Because of this, we were able to really create a mini version of a complete large scale compiler.
Through this hands-on learning, I was really able to understand the purpose of each component.

One tip that I think is important for groups to take away from this project is that one of the most
important steps in the process is the design of how the user will interact with the language. This
is one design decision that helps inform many decisions you will make about every portion of the
compiler down the line.

7.2. Andrew Peter Yevsey Gorovoy
This project provided an opportunity of course to learn the ins and outs of compiler design. The
Ocaml language is at first confusing, but its advantages and strong suites quickly became
apparent. The language itself had many small nuances and required a good amount of time to
figure out all the bugs.

Regarding the project, a huge lesson was understanding how to properly build and expand upon
existing code. At first, we started off trying to build from scratch and then transferred to
expanding upon the microc code. The web development practice of testing one incremental step
at a time was very helpful in this case as it allowed us to focus and isolate on certain issues.

In all honesty, the greatest learning experience from this project was understanding how to work
on a complex project as a team. This was a long term project with complex subject matter. Each
person had to do different things and this required a lot of communication and collaboration.
This team experience has been very valuable.

7.3. Bailey Nozomu Hwa
This project taught me--a Python fanatic-- that functional languages such as Ocaml are actually
cool. I feel that people should actually give OCaml a shot. Ocaml is akin to the Twizzler’s candy,

it's nasty at first, but once you eat enough of it, it starts to grow on you. The project itself is quite
nifty and feels great once you have finished things.

I recommend future PLT students to start early, make sure people get things done on time, and
ensure that the development environment is squared away first. If this is done, things will run
smoothly. Never assume that code is good until everyone has tested it and searched every nook
and cranny for errors. Maintain a centralized workflow and never get complacent until
everything is finished from start to end.

7.4. Shida Jing
Technically, I have learned and become more comfortable with functional language. Particularly,
I have learned good methods to use when debugging a functional language program, or just
reading a functional language program to try to understand it.

Practically, I have learned that when doing a complicated project, starting with a thin thread of
things that work, using test suites, and gradually expanding the width of the thread is the best
way to go. The whole process becomes more manageable and trackable. At every point in time,
you are very aware of what you have accomplished, and what is next to come.

I’ve also learned that starting early is always the best way to go. Divide and conquer when the
task is too big, and never be afraid to ask for help when you need it.

7.5. Annie Wang
The most important learning I had was having tight communication with the team by setting up
meetings as frequently as needed so everyone is on the same page. It’s easy when one group
member is creating certain functionalities in the code to not try to understand how that code is
written. Not doing so causes more time inputted when there’s a bug and the person who isn’t
writing the code goes and tries to fix it. I definitely felt bad asking my group members to explain
some things several times but realized that it’s a group effort and personal ego will only get in
the way.

My advice is to really ask the TA’s and professors tons of questions! Pay attention to class,
especially when the professor is going over the MicroC code. Ocaml seems scary but the more
you look at it, tinker and ask questions, you’ll get to understand Ocaml a bit more. Celebrate
every win you make during the process!

8. Appendix
Citation: project skeleton inspired by Professor Edwards’s MicroC and a previous project called
Matrx. You can find Matrx here: http://www.cs.columbia.edu/~sedwards/classes/2018/4115-fall/

This section and the next section contains a complete listing of the test suites and a complete
listing of our code, in that order.

8.1. Test Suite

Add-fail1.xirt

This test checks a failure catching condition in addition of two matrices.

Expected output:

Add-fail1.err

Add-fail2.xirt

This test checks a failure catching condition in addition of two matrices.

Expected output:

Add-fail2.err

fail-arithmetic-op.xirt

This test checks a failure catching improperly formatted arithmetic addition on num types.

Expected output:

fail-arithmetic-op.err

fail-assign.xirt

This test checks a failure catching improperly formatted assignment operation between strings,
nums, and bools.

Expected output:

fail-assign1.err

fail-assign2.xirt

This test checks a failure catching improperly formatted assignment operation between strings,
nums, and bools.

Expected output:

fail-assign2.err

Fail-func-arg.xirt

This test checks a failure catching bad passing of parameters to a user defined function; ie. fewer
parameters in user-defined function call than are required.

Expected output:

fail-func-arg.err

Fail-func-arg2.xirt

This test checks a failure catching bad passing of parameters to a user defined function; ie. more
parameters in user-defined function call than are required.

Expected output:

fail-func-arg2.err

Fail-func-dec.xirt

This test checks a failure catching bad declaration of a user-defined function; ie, capitalization of
function call not matching function declaration

Expected output:

Fail-func-dec.err

fail-get-cols.xirt

This test checks a failure catching of a poorly defined call to a built-in function; ie, getcols
requires a matrix input, not a num input.

Expected output:

fail-get-cols.err

fail-get-rows.xirt

This test checks a failure catching of a poorly defined call to a built-in function; ie, getrows
requires a matrix input, not a num input.

Expected output:

fail-get-rows.err

fail-global-variable.xirt

This test checks a failure catching of a poorly defined call to a built-in function; ie, getrows
requires a matrix input, not a num input.

Expected output:

Fail-global-variable.err

fail-if.xirt

This test checks a failure of a badly defined if statement; ie, the if statement has no condition
where one is expected.

Expected output:

fail-if.err

fail-intmain.xirt

This test checks a failure of a badly defined main statement; ie, a return type is specified in the
function declaration, but nothing is returned.

Expected output:

fail-intmain.err

fail-mult1.xirt

This test checks a failure of a badly called matrix multiplication call. This function (“matmul”) is
a built in function. It expects compatible sized matrices to be multiplied together. Here, badly
sized matrices (incompatible for multiplication) are being passed to the function, which will
throw an error as expected.

Expected output:

fail-mutlt1.err

fail-mult2.xirt

This test checks a failure of a badly called matrix multiplication call. This function (“matmul”) is
a built in function. Matmul built-in function expects to receive matrixes that can be multiplied
together. Here, a matrix with an empty field is passed to matmul. Matmul will throw an error as
expected.

Expected output:

fail-mutlt2.err

fail-uninit-var-usage.xirt

This test checks a failure of badly used num types. Here, a num type “m” is instantiated, but it is
assigned to a type of “y” which has not yet been defined.

Expected output:

Fail-uninit-var-usage.err

fail-while.xirt

This test checks a failure of badly defined while loop. Here, the while loop does not contain a
condition which is required.

Expected output:

fail-while.err

fail-while2.xirt

This test checks a failure of badly defined while loop. Here, the while loop contains a badly
formatted condition; ie. the condition does not return a boolean as expected.

Expected output:

Fail-while2.err

test-arithmetic-op.xirt

This test checks the success of all arithmetic operators. This includes division, multiplication,
addition, and subtraction with both negative and positive numbers, and both integer and decimal
numbers.

Expected output:

Test-arithmetic-op.out

test-assignment.xirt

This test checks the success of proper assignment. Here, a boolean is assigned to “true”, and then
re-assigned to an expression (6==8) which evaluates to false.

Expected output:

Test-assignment.out

Note: expected output is blank, with no errors or print statements.

test-autofill.xirt

This test checks the success of of auto-filling a matrix using the built-in autofill function. The
built in auto-fill function is meant to instantiate a matrix of user provided rows and columns size,
with the value the user provides. Here, the user requests a matrix of size 3 by 3, populated with
value “1”. This test also illustrates our num type, which automatically converts integers to floats
on the backend.

Expected output:

Test-autofill.out

test-cool-program-2.xirt

This program takes in a matrix of any size, and replaces an element with a one if there is a one in
its row or column. This large-scale test employs many built-ins of Xirtam. It shows:

- num and boolean types;
- control flow via for-loops;
- nested control flow via nested for-loops;
- Control flow of if statements
- Boolean evaluation of conditions within control flow structures
- Built in function: matset . This function sets a specific value in a given matrix.
- Built in function: matget. This function returns a specific value from a given matrix,

given x,y coordinates.
- Nested evaluation of built in functions midget and matset.
- User defined functions declaration, and call of user-defined function.
- Built in function: printm, which prints a matrix in an easy to understand format

Expected output:

Test-cool-program-2.out

test-cool-program.xirt

This is the demo program we showed in class. It takes in a binary matrix of any size, and an
additional zero matrix of the same size. The output is a matrix whose element indicates the
largest square submatrix that only has one’s and whose bottom-most right-most element is at that
position. This large-scale test employs many built-ins of Xirtam. It features:

- If/else control flow
- Boolean evaluation of conditions
- Built in function: getcols. This function returns the number of columns in a matrix.
- For loop control flow
- Built in function: matset. This function sets a specific x,y coordinate of a matrix with a

value
- User defined function declaration and call
- Built in function: getrows. This function returns the number of rows in a matrix.
- Built in function: matget . This function gets a specific x,y coordinate of a function
- Built in function: printn. This function prints a num type.
- Built in function: printm. This function prints a matrix (xirtam) type.
- Direct assignment of matrix without requiring dimensions in advance.

Expected output:

test-cool-program.out

test-determinant.xirt

This large-scale test is able to find the determinant of a matrix using Xirtam built in functions
and matrix types. It shows the usage of:

- Xirtam types
- Num types
- matget built in function
- Instantiation of matrix (xirtam type) without predefining size of matrix
- User defined function
- Control flow

The determ_two uses ba

Expected output:

Test-determinant.out

Test-emptymain.xirt

This test success of declaring main, with no content inside main. This test should pass without
errors.

Expected output:

Test-emptymain.out

Blank output, as no errors are thrown an no prints are utilized. This test should succeed, allowing
for an empty main function.

Test-for-c.xirt

This tests declaring a c-like syntax for loop successfully. This test is expected to pass without
errors.

Expected output:

Test-for-c.out

Test-func-dec.xirt

This tests the successful creation of user-defined functions, and invocation of user-defined
functions. This test should succeed without errors.

Expected output:

Test-func-dec.out

Test-getcols.xirt

This tests the successful usage of a built in function, “getcols”. “Getcols” will return the number
of columns in a matrix.

Expected output:

Test-getcols.out

Test-getrows.xirt

This tests the successful usage of the built in “getrows” function. “Getrows” will return the
number of rows in a matrix.

Expected output:

Test-getrows.out

Test-global-variable.xirt

This tests the successful creation and usage of global variables.

Expected output:

Test-global-variable.out

Test-if.xirt

This tests the successful creation and usage of if statements with direct boolean conditionals, and
conditionals that evaluate to booleans.

Expected output:

Test-if.out

Test-matadd-2.xirt

This tests the successful usage of the built in “matadd” function. This function adds two matrices
together. This tests addition of 1x1 matrices with varying values.

Expected output:

Test-matadd-2.out

Please note that the output is representing a 5, 1x1 matrices, which is the result of the addition of
the two matrix inputs.

Test-matadd-3.xirt

This tests the successful usage of the built in “matadd” function. This function adds two matrices
together. This tests matrix addition of a matrix that contains integers, a matrix that contains
floats, and a matrix that contains negative integers and floats. It should succeed without error.

Expected output:

Test-matadd-3.out

Test-matadd.xirt

This tests the successful usage of the built in “matadd” function. This function adds two matrices
together. This is the most basic matrix addition test.

Expected output:

Test-matadd.out

Please note that the output is representing one 3x2 matrix.

Test-matget.xirt

This tests the successful usage of the built in “matget” function. Matget returns the value at a
specific x,y coordinate of a matrix.

Test-matget.out

Test-matmult-2.xirt

This tests the successful usage of the built in “matmult” function. Matmult returns a new matrix
that is the multiplication of two matrix inputs. Here, two matrices of different size with both
positive and negative integers are multiplied.

Expected output:

Test-matmult-2.out

Test-matmult.xirt

This tests the successful usage of the built in “matmult” function. Matmult returns a new matrix
that is the multiplication of two matrix inputs. This is a basic matrix multiplication test.

Expected output:

Test-matmult.out

Test-matset.xirt

This tests the successful usage of the built in “matset” function. Matset sets a specific value at a
given x,y coordinate in the matrix. It modifies the original matrix and does not return a new
matrix.

Expected output:

Test-matset.out

Test-print-matrix1.xirt

This tests the successful usage of the built in “printm” function. The “printm” built in function
prints a matrix in a human readable way.

Expected output:

Test-print-matrix1.out

The following output represents a single matrix.

Test-print-matrix2.xirt

This tests the successful usage of the built in “printm” function. The “printm” built in function
prints a matrix in a human readable way. This tests shows the printing of a matrix with both
integer, negative and decimal values.

Expected output:

Test-print-matrix2.out

The following output represents a single matrix.

Test-printn.xirt

This tests the successful usage of the built in “printn” function. The “printn” built in function
prints a num type. It prints out only 2 numbers to the right of the decimal point.

Expected output:

Test-printn.out

Test-temp.xirt

This tests the successful creation of a xirtam type, which is a matrix. This test should succeed
without errors.

Expected output:

Test-temp.out

Output is blank, as no errors should be thrown and no print statements are invoked.

Test-transpose.xirt

This tests the successful usage of the built in “trans” function, which transposes a matrix input,
and returns the transposed matrix as output. Here, xirtam matrix “m” is being transposed.

Expected output:

Test-transpose.out

The output is a single 2x2 matrix which represents the transpose of matrix m.

test-unary-and-bool-op.xirt

This tests the successful usage of both unary and binary operations. In this test, the following
operations are invoked. Each return a boolean value internally. Each unary and binary operation
is also tested with nested expressions.:

- Less than (<)
- Less than or equal to (<=)
- Greater than (>)
- Greater than or equal to (>=)
- And (&&)
- Equality (==)
- Or (||)

Expected output:

test-unary-and-bool-op.out

In this output, 1 indicates a true statement evaluation. (0 would indicate a false statement
evaluation)

test-while-c.xirt

This tests the successful usage of a c-style while loop.:

Expected output:

test-while-c.out

test-while.xirt

This tests the successful usage of a while loop.

Expected output:

Test-while.out

8.2 XIRTAM Compiler Code

Makefile

readme.md

ast.ml

(* authored by: Bailey Hwa and Shida Jing

citation: microc compiler shown in class

*)

(*unary operations*)

type op_un = Not | Neg

type op_bin = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Great | Geq | And |
Or | Mod

type typ =

Num

| Bool

| String

| Void

| Int

| Xirtam

type expr =

(*Primitives and expressions*)

NumLit of float

| StrLit of string

| BoolLit of bool

| Id of string

| Unop of op_un * expr

| Binop of expr * op_bin * expr

| Assign of string * expr

| Call of string * expr list

(*IMPLEMENT Xirtam specific below*)

| XirtamLit of expr list

| Empty

(* bind can be expression too*)

type bind = typ * string * expr

type stmt =

Block of stmt list

| Expr of expr

| Return of expr

| If of expr * stmt * stmt

| For of expr * expr * expr * stmt

| While of expr * stmt (*the while loop is back in business*)

type func_decl = {

typ : typ;

f_name : string;

f_args : bind list; (* formals*)

f_locals : bind list; (* adding this, making it akin to micro c makes life easier
*)

f_statements : stmt list;

}

(* Pretty-printing functions below:*)

type program = bind list * func_decl list

let string_of_op = function

Add -> "+"

| Sub -> "-"

| Mult -> "*"

| Div -> "/"

| Equal -> "=="

| Great -> ">"

| Less -> "<"

| Geq -> ">="

| Neq -> "!="

| Leq -> "<="

| And -> "&&"

| Or -> "||"

| Mod -> "%"

let string_of_uop = function

Neg -> "-"

| Not -> "!"

let rec string_of_expr = function

| NumLit(l) -> string_of_float l

| BoolLit(true) -> "true"

| BoolLit(false) -> "false"

| XirtamLit(l) -> "\n[" ^ String.concat "," (List.map string_of_expr l) ^ "]\n"

| Id(s) -> s

| StrLit(s) -> s

(*we use fun instead of function because fun can take in multiple arguments*)

| Binop(e1, o, e2) ->string_of_expr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_expr
e2
| Unop(o, e) -> string_of_uop o ^ string_of_expr e

| Assign(v, e) -> v ^ " = " ^ string_of_expr e

| Call(f, e) -> f ^ "(" ^ String.concat ", " (List.map string_of_expr e) ^ ")"

| Empty -> ""

let string_of_typ = function

Num -> "num"

| Bool -> "bool"

| String -> "string"

| Void -> "void"

| Int -> "int"

| Xirtam -> "xirtam"

let string_of_bind (t, n) = string_of_typ t ^ " " ^ n ^ ";\n"

let rec string_of_stmt = function

Block(stmts) -> "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

| Expr(expr) -> string_of_expr expr ^ ";\n";

| Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

| If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

| If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

| For(e1, e2, e3, s) ->

"for (" ^ string_of_expr e1 ^ " ; " ^ string_of_expr e2 ^ " ; " ^ string_of_expr
e3 ^ ") " ^ string_of_stmt s
| While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

let string_of_tuple x = "(" ^ (fst x) ^ " : " ^ string_of_typ (snd x) ^ ")"

(* variable name pretty print, some vdecl can have type, name, and optional assignment
to expression, hence, _typ,_name, _*)
let string_of_vdecl (_typ, _name, _) =

string_of_typ _typ ^ " " ^ _name ^ ";\n"

(* Print out argument type and argument identifier *)

let string_of_fdecl fdecl =

string_of_typ fdecl.typ ^ " " ^

fdecl.f_name ^ "(" ^ String.concat ", " (List.map (fun (_, f_arg_name, _) ->
f_arg_name) fdecl.f_args) ^

")\n{\n"^

String.concat "" (List.map string_of_vdecl fdecl.f_locals) ^

String.concat "" (List.map string_of_stmt fdecl.f_statements) ^"}\n"

let string_of_program (vars, funcs) =

String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

String.concat "\n" (List.map string_of_fdecl funcs)

codegen.ml

(* Authored by Bailey Hwa, Shida Jing, and Andrew Gorovoy.Co-debug with Lior Attias. *)

(* Citation: based on MicroC compiler. Citation for past

project Matrx, specifically for defining the matrix type and

defining and calling built-in matrix functions. *)

module L = Llvm

module A = Ast

open Sast

module StringMap = Map.Make(String)

(* translate : Sast.program -> Llvm.module *)

let translate (globals, functions) =

let context = L.global_context () in

let llmem = L.MemoryBuffer.of_file "matrix.bc" in

let llm = Llvm_bitreader.parse_bitcode context llmem in

let the_module = L.create_module context "xirtam" in

(* Get types from the context *)

(* i1 is for Boolean *)

let i1_t = L.i1_type context (*i1_t = context.i1_type *)

and float_t = L.double_type context

and i32_t = L.i32_type context

and i8_t = L.i8_type context

in

let char_point_t = L.pointer_type i8_t

and void_t = L.void_type context

and xirtam_t = L.pointer_type (match L.type_by_name llm "struct.matrix" with

None -> raise (Failure "Missing implementation for struct Matrix")

| Some t -> t)

in

let ltype_of_typ = function

A.Num -> float_t

| A.Bool -> i1_t

| A.Void -> void_t

| A.String -> char_point_t

| A.Int -> i32_t

| A.Xirtam -> xirtam_t

in

let global_vars : L.llvalue StringMap.t =

(* ignore 3rd optional expr*)

let global_var m (t, n, _) =

let init = match t with

A.Num -> L.const_float (ltype_of_typ t) 0.0

(* | A.String -> *)

| _ -> L.const_int (ltype_of_typ t) 0

in StringMap.add n (L.define_global n init the_module) m in

List.fold_left global_var StringMap.empty globals in

let printf_t : L.lltype =

L.var_arg_function_type i32_t [| L.pointer_type i8_t |] in

(*print num aka a float*)

let printf_func : L.llvalue =

L.declare_function "printf" printf_t the_module in

let printMatrix_t = L.function_type i32_t [| xirtam_t |] in

let printMatrix_f = L.declare_function "display" printMatrix_t the_module in

let matrix_init_t = L.function_type xirtam_t [|i32_t ; i32_t|] in

let matrix_init_f = L.declare_function "initMatrix_CG" matrix_init_t the_module in

let store_matrix_t = L.function_type xirtam_t [|xirtam_t ; float_t |] in

let store_matrix_f = L.declare_function "storeVal" store_matrix_t the_module in

(*get matrix m*,float r, float c r and c get casted in private

calls*)

let get_matrix_el_t = L.function_type float_t [| xirtam_t;float_t;float_t |] in

let get_matrix_el_f = L.declare_function "pub_get" get_matrix_el_t the_module in

(*set matrix m* float r, float c, float v r and c get casted in private

calls*)

let set_matrix_el_t = L.function_type i32_t [| xirtam_t;float_t;float_t;float_t |]

in

let set_matrix_el_f = L.declare_function "pub_set" set_matrix_el_t the_module in

(*transpose: matrix *)

let transpose_t = L.function_type xirtam_t [| xirtam_t |] in

let transpose_f = L.declare_function "transpose" transpose_t the_module in

let getrows_t = L.function_type float_t [|xirtam_t|] in

let getrows_f = L.declare_function "getrows" getrows_t the_module in

let getcols_t = L.function_type float_t [|xirtam_t|] in

let getcols_f = L.declare_function "getcols" getcols_t the_module in

let mult_matrix_t = L.function_type xirtam_t [|xirtam_t; xirtam_t|] in

let mult_matrix_f = L.declare_function "matrixMult" mult_matrix_t the_module in

let add_matrix_t = L.function_type xirtam_t [|xirtam_t; xirtam_t|] in

let add_matrix_f = L.declare_function "mAdd" add_matrix_t the_module in

let autofill_t = L.function_type xirtam_t [|float_t; float_t;float_t|] in

let autofill_f = L.declare_function "autofill" autofill_t the_module in

(* Define each function (arguments and return type) so we can

call it even before we've created its body *)

let function_decls : (L.llvalue * sfunc_decl) StringMap.t =

let function_decl m fdecl =

let name = fdecl.sf_name

and formal_types = (* make this filter out the 2nd and 3rd arg*)

Array.of_list (List.map (fun (t,_,_) -> ltype_of_typ t) fdecl.sf_args)

in let ftype = L.function_type (ltype_of_typ fdecl.styp) formal_types in

StringMap.add name (L.define_function name ftype the_module, fdecl) m in

List.fold_left function_decl StringMap.empty functions in

(* Fill in the body of the given function *)

let build_function_body fdecl =

let (the_function, _) = StringMap.find fdecl.sf_name function_decls in

let builder = L.builder_at_end context (L.entry_block the_function) in

let float_format_str = L.build_global_stringptr "%g\n" "fmt" builder in

(* Construct the function's "locals": formal arguments and locally

declared variables. Allocate each on the stack, initialize their

value, if appropriate, and remember their values in the "locals" map *)

let local_vars =

let add_formal m (t, n) p =

L.set_value_name n p;

let local = L.build_alloca (ltype_of_typ t) n builder in

ignore (L.build_store p local builder);

StringMap.add n local m

(* Allocate space for any locally declared variables and add the

* resulting registers to our map *)

and add_local m (t, n) =

let local_var = L.build_alloca (ltype_of_typ t) n builder

in StringMap.add n local_var m

in

(*

we should reshape these to get rid of the optional 3rd value that we don't care

about in the argument list

when adding local vars or the func vars

*)

let filter_args_helper (_type, _var_id, _) = (_type, _var_id) in

let formatted_args = List.map filter_args_helper fdecl.sf_args in

let formatted_locals = List.map filter_args_helper fdecl.sf_locals in

let formals = List.fold_left2 add_formal StringMap.empty formatted_args

(Array.to_list (L.params the_function)) in

List.fold_left add_local formals formatted_locals

in

(* Return the value for a variable or formal argument.

Check local names first, then global names *)

let lookup n = try StringMap.find n local_vars

with Not_found -> StringMap.find n global_vars

in

(* Construct code for an expression; return its value *)

let rec expr builder ((_, e) : sexpr) = match e with

SBoolLit b -> L.const_int i1_t (if b then 1 else 0)

| SNumLit l -> L.const_float float_t l

| SStrLit s -> L.build_global_stringptr s "tmp" builder

| SId id -> L.build_load (lookup id) id builder

| SXirtamLit (contents, rows, cols) ->

let rec expr_list = function

[] -> []

| hd::tl -> expr builder hd::expr_list tl

in

let contents' = expr_list contents

in

let m = L.build_call matrix_init_f [| L.const_int i32_t cols; L.const_int

i32_t rows |] "matrix_init" builder

in

ignore(List.map (fun v -> L.build_call store_matrix_f [| m ; v |]

"store_val" builder) contents'); m

| SUnop(op, ((t, _) as e)) ->

let e' = expr builder e in

(match op with

A.Neg when t = A.Num -> L.build_fneg

| A.Neg -> L.build_neg

| A.Not -> L.build_not) e' "tmp" builder

(*In fashion of microc have typechecking for *)

| SEmpty -> L.const_int i32_t 0

| SBinop (e1, op, e2) ->

let (_typ, _) = e1 in (*get type of first expression, semant should have

checked that both types of e1 and e2 should be same*)

let e1' = expr builder e1 in

let e2' = expr builder e2 in (match _typ with

(*this looks much cleaner*)

(*binary bool operations!*)

A.Bool -> (match op with

A.And -> L.build_and

| A.Or -> L.build_or

| A.Equal -> L.build_icmp L.Icmp.Eq

| A.Neq -> L.build_icmp L.Icmp.Ne

| _ -> raise (Failure "internal error: semant should have rejected

and/or on float")

) e1' e2' "tmp" builder

(* num operations*)

| A.Int | A.String | A.Void | A.Num -> (match op with

A.Add -> L.build_fadd

| A.Sub -> L.build_fsub

| A.Mult -> L.build_fmul

| A.Div -> L.build_fdiv

| A.Mod -> L.build_frem

(* | A.Exp -> L.build_call exp_func [| e1'; e2'|] "exp" builder double

check this *)

| A.Equal -> L.build_fcmp L.Fcmp.Oeq

| A.Neq -> L.build_fcmp L.Fcmp.One

| A.Less -> L.build_fcmp L.Fcmp.Olt

| A.Leq -> L.build_fcmp L.Fcmp.Ole

| A.Great -> L.build_fcmp L.Fcmp.Ogt

| A.Geq -> L.build_fcmp L.Fcmp.Oge

| A.And

| A.Or -> raise (Failure "internal error: semant should have rejected

and/or on float")

) e1' e2' "tmp" builder

| A.Xirtam -> raise (Failure "cannot use binop on matrices")

)

| SAssign (s, e) -> let e' = expr builder e in

ignore(L.build_store e' (lookup s) builder); e'

| SCall ("printn", [e]) ->

L.build_call printf_func [| float_format_str ; (expr builder e) |]

"printf" builder

| SCall ("printm", [e]) ->

L.build_call printMatrix_f [| (expr builder e) |] "printm" builder

| SCall ("matmult", [e1; e2]) ->

L.build_call mult_matrix_f [| (expr builder e1); (expr builder e2) |] "matmult"

builder

| SCall ("matadd", [e1; e2]) ->

L.build_call add_matrix_f [| (expr builder e1); (expr builder e2) |] "matadd"

builder

(* acces and get *)

| SCall ("matget", [e1; e2; e3;]) ->

L.build_call get_matrix_el_f [| (expr builder e1); (expr builder e2);(expr

builder e3) |] "matget" builder

| SCall ("matset", [e1; e2; e3; e4;]) ->

L.build_call set_matrix_el_f [| (expr builder e1); (expr builder e2);(expr

builder e3);(expr builder e4) |] "matset" builder

(* transpose *)

| SCall ("trans", [e]) ->

L.build_call transpose_f [| (expr builder e) |] "trans" builder

| SCall ("getrows", [e]) ->

L.build_call getrows_f [| (expr builder e) |] "getrows" builder

| SCall ("getcols", [e]) ->

L.build_call getcols_f [| (expr builder e) |] "getcols" builder

| SCall ("autofill", [e1; e2; e3;]) ->

L.build_call autofill_f [| (expr builder e1); (expr builder e2);(expr

builder e3) |] "autofill" builder

| SCall (f, args) ->

let (fdef, fdecl) = StringMap.find f function_decls in

let llargs = List.rev (List.map (expr builder) (List.rev args)) in

let result = (match fdecl.styp with

A.Void -> ""

| _ -> f ^ "_result") in

L.build_call fdef (Array.of_list llargs) result builder

in

(* *)

(* LLVM insists each basic block end with exactly one "terminator"

instruction that transfers control. This function runs "instr builder"

if the current block does not already have a terminator. Used,

e.g., to handle the "fall off the end of the function" case. *)

let add_terminal builder instr =

match L.block_terminator (L.insertion_block builder) with

Some _ -> ()

| None -> ignore (instr builder) in

(* statements and control flow*)

let rec stmt builder = function

SBlock sl -> List.fold_left stmt builder sl

| SExpr e -> ignore(expr builder e); builder

| SReturn e -> ignore(match fdecl.styp with

(* Special "return nothing" instr *)

A.Void -> L.build_ret_void builder

(* Build return statement *)

| _ -> L.build_ret (expr builder e) builder);

builder

(* are we adding continue?*)

| SIf (predicate, then_stmt, else_stmt) ->

let bool_val = expr builder predicate in

let merge_bb = L.append_block context "merge" the_function in

let build_br_merge = L.build_br merge_bb in (* partial function *)

let then_bb = L.append_block context "then" the_function in

add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)

build_br_merge;

let else_bb = L.append_block context "else" the_function in

add_terminal (stmt (L.builder_at_end context else_bb) else_stmt)

build_br_merge;

ignore(L.build_cond_br bool_val then_bb else_bb builder);

L.builder_at_end context merge_bb

| SWhile (predicate, body) ->

let pred_bb = L.append_block context "while" the_function in

ignore(L.build_br pred_bb builder);

let body_bb = L.append_block context "while_body" the_function in

add_terminal (stmt (L.builder_at_end context body_bb) body)

(L.build_br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in

let bool_val = expr pred_builder predicate in

let merge_bb = L.append_block context "merge" the_function in

ignore(L.build_cond_br bool_val body_bb merge_bb pred_builder);

L.builder_at_end context merge_bb

(* Implement for loops as while loops *)

| SFor (e1, e2, e3, body) -> stmt builder

(SBlock [SExpr e1 ; SWhile (e2, SBlock [body ; SExpr e3])])

in

(* Build the code for each statement in the function *)

let builder = stmt builder (SBlock fdecl.sf_statements) in

(* Add a return if the last block falls off the end *)

add_terminal builder (match fdecl.styp with

A.Void -> L.build_ret_void

(* | A.Int -> L.build_ret (L.const_int i32_t 0) *)

| A.Num -> L.build_ret (L.const_float float_t 0.0)

| t -> L.build_ret (L.const_int (ltype_of_typ t) 0))

in

List.iter build_function_body functions;

the_module

matrix.c
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// Authored by Bailey Hwa, Shida Jing, and Andrew Gorovoy

// Referenced the past project Matrx. However, we noticed

// that the past project code did not work, and we

// made heavy modifications. At this point, this file is pretty

// much original, except for general skeleton stuff and helper functions.

static void die(const char *message)

{

perror(message);

exit(1);

}

struct matrix {

int num_rows;

int num_cols;

double* matrixAddr; // accessed [row][col]

int buildPosition;

};

typedef struct matrix matrix;

int debug = 0;

double get(struct matrix* m, int r,int c){

//get m[r][c]

int kill = 0;

if (r>((m->num_rows)-1)){

perror("row index out of range when setting matrix ");

kill = 1;

}

if (c>((m->num_cols)-1)){

perror("col index out of range when setting matrix ");

kill = 1;

}

if(kill==1){

die("");

}

int idx = c + (r * (m->num_cols));

return m->matrixAddr[idx];

}

void set(struct matrix* m,int r,int c,double v){

//set m[r][c] to v

int kill = 0;

if (r>((m->num_rows)-1)){

perror("row index out of range when setting matrix ");

kill = 1;

}

if (c>((m->num_cols)-1)){

perror("col index out of range when setting matrix ");

kill = 1;

}

if(kill==1){

die("");

}

int idx = c + (r * (m->num_cols));

m->matrixAddr[idx]=v;

}

double pub_get(struct matrix* m, double r,double c){

if (r < 0) {

perror("Row value is less than 0");

exit(1);

}

if (c < 0) {

perror("Column value is less than 0");

exit(1);

}

return get(m,(int)r,(int)c);

}

void pub_set(struct matrix* m, double r,double c, double v){

if (r < 0) {

perror("Row value is less than 0");

exit(1);

}

if (c < 0) {

perror("Column value is less than 0");

exit(1);

}

set(m,(int)r,(int)c,v);

}

double getrows(matrix* m) {

return (double) m->num_rows;

}

double getcols(matrix* m) {

return (double) m->num_cols;

}

matrix* autofill(double num_cols, double num_rows, double value) {

if (((int) num_cols < 1)|| ((int) num_rows < 1)) {

perror("Number of columns or number of rows is not valid.\nRows and columns must be

a positive number.");

exit(1);

}

double* matrixValues = malloc((int) num_rows * (int) num_cols * sizeof(double*));

for(int r = 0; r < num_rows; r++) {

for(int c = 0; c < num_cols; c++) {

// matrixValues[r + (c * num_rows)]=0;

matrixValues[c + (r * (int)num_cols)]=(int) value;

}

}

//return a pointer to matrix struct

matrix* result = malloc(sizeof(struct matrix));

result->num_cols = num_cols;

result->num_rows = num_rows;

result->matrixAddr = matrixValues;

result->buildPosition = 0;

return result;

}

matrix* storeVal(matrix* target, double value) {

int position = target->buildPosition;

int curr_row = position / target->num_cols;

int curr_col = position % target->num_cols;

if(debug == 1) {

printf("Storing: %f\n", value);

printf("in row: %d\n", curr_row);

printf("in col: %d\n", curr_col);

}

target->matrixAddr[position] = value;

target->buildPosition = target->buildPosition + 1;

return target;

}

matrix* initMatrix(double* listOfValues, int num_cols, int num_rows) {

double* matrixValues = malloc(num_rows * num_cols * sizeof(double*));

if(debug == 1) {

printf("Building matrix:\n");

printf("num_rows: %d\n", num_rows);

printf("num_cols: %d\n", num_cols);

}

//set all values in matrix to 0 if list of values is NULL

if (listOfValues == NULL) {

for(int r = 0; r < num_rows; r++) {

for(int c = 0; c < num_cols; c++) {

matrixValues[c + (r * num_cols)]=0;

}

}

}

//load values from a list of values

else {

for(int r = 0; r < num_rows; r++) {

for(int c = 0; c < num_cols; c++) {

int idx = c + (r * num_cols);

matrixValues[idx]=listOfValues[idx];

}

}

}

//return a pointer to matrix struct

matrix* result = malloc(sizeof(struct matrix));

result->num_cols = num_cols;

result->num_rows = num_rows;

result->matrixAddr = matrixValues;

result->buildPosition = 0;

return result;

}

matrix* initMatrix_CG(int num_cols, int num_rows) {

return initMatrix(NULL, num_cols, num_rows);

}

matrix* mAdd(matrix* lhs, matrix* rhs) {

//check dimensions

if (lhs->num_rows != rhs->num_rows || lhs->num_cols != rhs->num_cols) {

perror("Addition size mismatch.");

perror("Add");

exit(1);

}

int rows = lhs->num_rows;

int cols= lhs->num_cols;

matrix *result = initMatrix(NULL, cols, rows);

for(int i=0; i < rows; i++) {

for(int j=0; j < cols; j++) {

double sum = get(lhs,i,j)+get(rhs,i,j);

set(result,i,j,sum);

}

}

return result;

}

matrix* matrixMult(matrix* lhs, matrix* rhs) {

//check dimensions//our original code xirtam

if (lhs->num_cols != rhs->num_rows) {

die("matrix multiplication dimensions mismatch, must have (AxM)*(MxB)");

}

int rows = lhs->num_rows;

int cols= rhs->num_cols;//(r1xc1)*(r2xc2)

matrix *result = initMatrix(NULL, cols, rows);

for(int i=0; i<rows; i++) {

for(int j=0; j<cols; j++) {

for (int k=0; k < rhs->num_rows; k++){

set(result,i,j,get(result,i,j)+(get(lhs,i,k)*get(rhs,k,j)));

}

}

}

return result;

}

void display(matrix* input) {

int row = input->num_rows;

int col = input->num_cols;

for(int i = 0; i<row; i++) {

for(int j=0; j<col; j++) {

if (j == 0) {

printf("%.2f", get(input,i,j));

} else {

printf(" %.2f", get(input,i,j));

}

}

printf("\n");

}

}

matrix* transpose(matrix* input) {

//switch rows and cols, get empty(i.e., zeroed matrix of transposed size, then fill)

int rows = input->num_rows;

int cols = input->num_cols;

matrix *result = initMatrix(NULL, rows, cols);

for(int i=0; i<rows; i++) {

for(int j=0; j<cols; j++) {

set(result, j,i, get(input,i,j));

}

}

return result;

}

#ifdef BUILD_TEST

int main(int argc,char** argv) {

//run tests of each function

//initMatrix and display of empty matrix

printf("\n===========testing empty init========\n");

matrix *null_matrix=initMatrix(NULL, 2, 2);

printf("\n===========testing list init========\n");

//initMatrix and display of 2x2 matrix

double vals1[] = {91, 2, 3, 222, 7, 6};

double *list1 = vals1;

matrix *m = initMatrix(list1, 3, 2);

display(m);

for(int i = 0; i < 4; i++) {

//fill first 4 values, i,e., first row as wel as first element of second row

m = storeVal(m, 5);

printf("Storing 5: \n");

display(m);

}

printf("\n===========testing public get and set ========\n");

double r = 1.1; double c = 0;double setval = 151.99;

printf("get 1,0 of above matrix: %.2f\n", pub_get(m,r,c));

pub_set(m,r,c,setval);

printf("set 1,0 of above matrix: \n");

display(m);

// //add 2 of the same matrix

printf("\n===========testing addition========\n");

double vals1a[] = {1,2,3,4,5,6};

double *list1a = vals1a;

matrix *ma = initMatrix(list1a, 2, 3);

matrix *result_sum = mAdd(ma, ma);

display(result_sum);//

// //multiply two matrices

printf("\n===========testing multiplication========\n");

double v1[] = {1,2,3,4,5,6};

double v2[] = {10,11,20,21,30,31};

matrix *m1 = initMatrix(v1, 3, 2);

matrix *m2 = initMatrix(v2, 2, 3);

matrix *result_product = matrixMult(m1, m2);

// Should yield

// 140.00 146.00

// 320.00 335.00

display(result_product);

printf("\n===========testing transpose========\n");

double v1t[] = {1,2,3,4,5,6};

matrix *m1t = initMatrix(v1t, 2, 3);

display(transpose(m1t));

printf("\n Below are Shida testing on weird cases.\n");

double k1[] = {-4, 2, 4, 422, 21, 2, 0.4, 6.2, -3};

double k2[] = {1.01, 2, 0.91, 422, 21, -3, 0.4, 6.2, 32.74};

matrix *n1 = initMatrix(k1, 3, 3);

matrix *n2 = initMatrix(k2, 3, 3);

matrix *result_product2 = mAdd(n2, n1);

// Should yield

// 140.00 146.00

// 320.00 335.00

display(result_product2);

// Below is Shida testing demo program

// double source[] = {0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,

1, 1, 1, 0, 0, 0, 0, 0};

// double dest[] = {0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0,

0,0,0,0,0,0};

// matrix* d = initMatrix(dest, 5, 6);

// matrix* s = initMatrix(source, 5, 6);

// int cur_r;

// int cur_c;

// double desired_min;

// double desired_min_plus_1;

// d = copy_first_row(s, d);

// d = copy_first_col(s, d);

// for (cur_r = 1; cur_r < 6; cur_r = cur_r + 1) {

// for (cur_c = 1; cur_c < 5; cur_c = cur_c + 1) {

// if (get(s, cur_r, cur_c) == 1) {

// desired_min = min(get(d, cur_r-1, cur_c), get(d, cur_r, cur_c-1),

get(d, cur_r-1, cur_c-1));

// desired_min_plus_1 = desired_min + 1;

// set(d, cur_r, cur_c, desired_min_plus_1);

// if (cur_r == 4 && cur_c == 3) {

// printf("WE ARE HERE \n");

// printf("%f", desired_min);

// }

// } else {

// set(d, cur_r, cur_c, 0);

// }

// }

// }

// display(d);

}

#endif

parser.mly
/*

XIRTAM Parser

Citation: microC processor code

*/

%{ open Ast %}

/* Authored by Bailey Hwa, help by Shida Jing */

/* Tokens: syntax */

%token PAREN_L PAREN_R CURLY_L CURLY_R SQUARE_L SQUARE_R SEMICOL COMMA

/* Tokens: Operators & literals */

%token ADD SUB TIMES ASSIGN NOT EQ NEQ GT LT LEQ GEQ PERIOD TRUE FALSE DIV MOD

/* Tokens: program flow */

%token AND OR IF ELSE FOR WHILE RETURN NEW DEL NULL

/* Tokens: matrix functions */

%token MAT_FILL MAT_TRANSPOSE MAT_ROWS MAT_COLS MAT_EQ MAT_ADD MAT_MULT_SCALAR MAT_MULT

/* Tokens: Datatypes */

%token NUM BOOL STRING VOID XIRTAM

/*Literals*/

%token <float> NUMLIT

%token <bool> BOOLLIT

%token <string> ID

%token <string> STRLIT

%token EOF

/*Program*/

%start program

%type <Ast.program> program

%nonassoc HTELSE

%nonassoc ELSE

%left ASSIGN

%left COMMA

%left OR

%left AND

%left EQ NEQ

%left GT LT GEQ LEQ

%left ADD SUB

%left TIMES DIV MOD

%right NOT NEG /*boolean negation and negative*/

%%

program:

decls EOF {$1}

decls:

/* nothing */ { ([], []) }

| decls var_decl { (($2 :: fst $1), snd $1) }

| decls func_decl { (fst $1, ($2 :: snd $1)) }

var_decl:

typ ID SEMICOL { ($1, $2, Empty) }

var_decl_list:

/* nothing */ { [] }

| var_decl_list var_decl { $2 :: $1 }

func_decl:

typ ID PAREN_L f_args_opt PAREN_R CURLY_L var_decl_list stmt_list CURLY_R

{{ typ = $1;

f_name = $2; (*func name, use symboltables*)

f_args = $4;(*args *)

f_locals = $7;

f_statements = List.rev $8 (*statements in function*)}} /*reverse list to

ensure proper ordering*/

f_args_opt:

/* nothing */ { [] }

| f_args_list { List.rev $1 }

f_args_list: /* arg list with types for functinos */

typ ID { [($1,$2,Empty)] } /*added the Empty because we can

have assignment to expression, but we dont want to in this case*/

| f_args_list COMMA typ ID { ($3,$4,Empty) :: $1 }

args_opt:

{ [] }

| args_list { List.rev $1 }

args_list:

expr { [$1] }

| args_list COMMA expr { ($3 :: $1) }

/*datatypes*/

typ:

NUM {Num}

| BOOL {Bool}

| STRING {String}

| VOID {Void}

/*matrix*/

| XIRTAM {Xirtam}

stmt_list:

{[]}

| stmt_list stmt {$2 :: $1}

stmt: /*all statements must end with semicolon*/

expr SEMICOL { Expr $1 }

| RETURN expr_opt SEMICOL { Return $2 }

| CURLY_L stmt_list CURLY_R { Block(List.rev $2) }

| IF PAREN_L expr PAREN_R stmt %prec HTELSE { If($3, $5, Block([])) }

| IF PAREN_L expr PAREN_R stmt ELSE stmt { If($3, $5, $7) }

| FOR PAREN_L expr_opt SEMICOL expr SEMICOL expr_opt PAREN_R stmt { For($3, $5, $7,

$9) }

| WHILE PAREN_L expr PAREN_R stmt { While($3, $5) }

expr_opt:

{Empty} /*no expression or something */

| expr {$1}

expr:

TRUE { BoolLit(true) }

| FALSE { BoolLit(false) }

| STRLIT { StrLit($1) }

| NUMLIT { NumLit($1) }

| ID { Id($1) }

/*matrix*/

| SQUARE_L mat SQUARE_R {XirtamLit($2)}

| expr ADD expr { Binop($1, Add, $3) }

| expr SUB expr { Binop($1, Sub, $3) }

| expr TIMES expr { Binop($1, Mult, $3) }

| expr DIV expr { Binop($1, Div, $3) }

| expr MOD expr {Binop($1, Mod, $3) }

| expr EQ expr { Binop($1, Equal, $3) }

| expr NEQ expr { Binop($1, Neq, $3) }

| expr GT expr { Binop($1, Great, $3) }

| expr LT expr { Binop($1, Less, $3) }

| expr GEQ expr { Binop($1, Geq, $3) }

| expr LEQ expr { Binop($1, Leq, $3) }

| expr AND expr { Binop($1, And, $3) }

| expr OR expr { Binop($1, Or, $3) }

| SUB expr %prec NEG { Unop(Neg, $2) } /*minus statement, adding

prec made it work,*/

| NOT expr { Unop(Not, $2) } /*logical negation*/

| ID ASSIGN expr { Assign($1, $3) }

| ID PAREN_L args_opt PAREN_R { Call($1, $3) }

| PAREN_L expr PAREN_R { $2 } /*grouping

func1((a+b)(b+c))*/

/*Xirtam matrix*/

mat:

SQUARE_L args_list SQUARE_R {[XirtamLit(List.rev $2)]}

/*[[1,2,3]]*/

| SQUARE_L args_list SQUARE_R COMMA mat {XirtamLit(List.rev $2)::$5}

/*[[1,2,3], [1,2,3], MAT]*/

sast.ml

Open Ast

(* authored by: Bailey Hwa and Shida Jing *)

(* Citation: based on MicroC code *)

type sexpr = typ * sx

and sx =

(*Primitives and expressions*)

SNumLit of float

| SStrLit of string

| SBoolLit of bool

| SXirtamLit of sexpr list * int * int

| SId of string

| SUnop of op_un * sexpr

| SBinop of sexpr * op_bin * sexpr

| SAssign of string * sexpr

| SCall of string * sexpr list

| SEmpty

type sbind = typ * string * sexpr

type sstmt =

SBlock of sstmt list

| SExpr of sexpr

| SReturn of sexpr

| SIf of sexpr * sstmt * sstmt

| SFor of sexpr * sexpr * sexpr * sstmt

| SWhile of sexpr * sstmt (* adding while loop back*)

(*should make sbind because these should be semantically checked!*)

type sfunc_decl = {

styp : typ;

sf_name : string;

sf_args : sbind list; (* formals*)

sf_locals : sbind list; (*add local variables *)

sf_statements : sstmt list;

}

(*add this so we can check if variables are initialized or not!*)

type inited = {

v_type : typ;

v_id : string;

mutable v_init : bool;

}

(* Pretty-printing functions below:*)

type sprogram = bind list * sfunc_decl list

let rec string_of_sexpr (t, e) =

"(" ^ string_of_typ t ^ " : " ^ (match e with

| SNumLit(l) -> string_of_float l

| SBoolLit(true) -> "true"

| SBoolLit(false) -> "false"

| SId(s) -> s

| SStrLit(s) -> s

| SXirtamLit(x, r, c) -> "(rows: " ^ string_of_int r ^ ", cols: " ^ string_of_int c ^

") : [" ^ String.concat ", " (List.map string_of_sexpr x) ^ "]"

(*we use fun instead of function because fun can take in multiple arguments*)

| SBinop(e1, o, e2) -> string_of_sexpr e1 ^ " " ^ string_of_op o ^ " " ^

string_of_sexpr e2

| SUnop(o, e) -> string_of_uop o ^ string_of_sexpr e

| SAssign(v, e) -> v ^ " = " ^ string_of_sexpr e

| SCall(f, e) -> f ^ "(" ^ String.concat ", " (List.map string_of_sexpr e) ^ ")"

| SEmpty -> ""

) ^ ")"

let rec string_of_sstmt = function

SBlock(stmts) -> "{\n" ^ String.concat "" (List.map string_of_sstmt stmts) ^ "}\n"

| SExpr(expr) -> string_of_sexpr expr ^ ";\n";

| SReturn(expr) -> "return " ^ string_of_sexpr expr ^ ";\n";

| SIf(e, s, SBlock([])) -> "if (" ^ string_of_sexpr e ^ ")\n" ^ string_of_sstmt s

| SIf(e, s1, s2) -> "if (" ^ string_of_sexpr e ^ ")\n" ^

string_of_sstmt s1 ^ "else\n" ^ string_of_sstmt s2

| SFor(e1, e2, e3, s) ->

"for (" ^ string_of_sexpr e1 ^ " ; " ^ string_of_sexpr e2 ^ " ; " ^

string_of_sexpr e3 ^ ") " ^ string_of_sstmt s

| SWhile(e, s) -> "while (" ^ string_of_sexpr e ^ ") " ^ string_of_sstmt s (* we

should implement this I think*)

(* Print out argument type and argument identifier *)

let string_of_sfdecl fdecl =

string_of_typ fdecl.styp ^ " " ^

fdecl.sf_name ^ "(" ^String.concat ", " (List.map (fun (_, f_arg_name, _) ->

f_arg_name) fdecl.sf_args) ^

")\n{\n" ^

String.concat "" (List.map string_of_vdecl fdecl.sf_locals) ^

String.concat "" (List.map string_of_sstmt fdecl.sf_statements) ^

"}\n"

let string_of_sprogram (vars, funcs) =

String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

String.concat "\n" (List.map string_of_sfdecl funcs)

scanner.mll
{ open Parser }

(* authored by: Bailey Hwa, help by Shida Jing *)

(* Citation: MicroC scanner *)

(*digits*)

let digit = ['0'-'9']

let digits = digit+

rule tokenize = parse

[' ' '\t' '\r' '\n'] { tokenize lexbuf } (* Whitespace/filler*)

(* ---------- COMMENTS ----------- *)

| "/*" { comment lexbuf } (* comments *)

(* Basic syntax *)

| '(' {PAREN_L}

| ')' {PAREN_R}

| '{' {CURLY_L}

| '}' {CURLY_R}

| '[' {SQUARE_L}

| ']' {SQUARE_R}

| ';' {SEMICOL}

| ',' {COMMA}

(* Operators, both unary and binary *)

| '+' {ADD}

| '-' {SUB}

| '*' {TIMES}

| '/' {DIV}

| '=' {ASSIGN }

| "!" {NOT}

| "==" {EQ}

| "!=" {NEQ}

| '>' {GT}

| '<' {LT}

| "<=" {LEQ}

| ">=" {GEQ}

| '.' {PERIOD}

(* Program flow *)

| "&&" {AND}

| "||" {OR}

| "if" {IF}

| "else" {ELSE}

| "for" {FOR}

| "while" {WHILE}

| "return" {RETURN}

| "new" {NEW}

| "del" {DEL}

| "NULL" {NULL}

(* Primitive data & function types *)

| "num" {NUM}

| "bool" {BOOL}

| "string" {STRING}

| "void" {VOID}

| "xirtam" {XIRTAM}

(* Literals*)

| "true" {TRUE}

| "false" {FALSE}

| digits as lex { NUMLIT(float_of_string lex) } (*convert all numbers to float (num

datatype)*)

| digits '.' digit* (['e' 'E'] ['+' '-']? digits)? as lex {NUMLIT(float_of_string

lex) } (*accept floating point numbers with signs*)

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lex {ID(lex)} (*Variable IDS

string and number _*)

| '"' ([^ '"']* as lex) '"' { STRLIT(lex) } (*double quotes with lookahead*)

(* Xirtam module functions*)

| eof { EOF }

| _ as char { raise (Failure("invalid character detectred: " ^ Char.escaped char)) }(*

raise error *)

and comment = parse

"*/" { tokenize lexbuf }

| _ { comment lexbuf }

semant.ml

(* authored by: Bailey Hwa and Shida Jing, co-debug with Lior Attias *)

(* Citation: Semantic checking for the MicroC compiler.

Also referenced past project Matrx, but eventually modified

everything, so it's pretty much original at this point. *)

open Ast

open Sast

module StringMap = Map.Make(String)

(* Semantic checking of the AST. Returns an SAST if successful,

throws an exception if something is wrong.

Check each global variable, then check each function *)

(* global semant functions*)

(* make error msg*)

let make_err er = raise (Failure er) ;;

(*if func is main, make it hidden int type, if it is somehow int and not main, return

error*)

let typ_helper _nm _tp = (match _nm with

"main" -> Int

| _ -> (match _tp with

Int -> make_err ("function "^_nm ^" is of illegal type int")

|_ -> _tp));;

let check (globals, functions) =

(* function binding checks, shouldnt have duplicated of that*)

let check_binds (kind : string) (binds : bind list) =

List.iter (function

(Void, b, _) -> raise (Failure ("illegal void " ^ kind ^ " " ^ b))

| _ -> ()) binds;

let rec dups = function

[] -> ()

| ((_,n1,_) :: (_,n2,_) :: _) when n1 = n2 ->

raise (Failure ("duplicate " ^ kind ^ " " ^ n1))

| _ :: t -> dups t

in dups (List.sort (fun (_,a,_) (_,b,_) -> compare a b) binds)

in

(* Check global variables *)

check_binds "global" globals;

(*function declaration, add funcs and appropriate field data to the StringMap, Struct

below matches that of function in ast *)

let built_in_decls =

let add_bind map_in (_name, _argtype, _ret_type) =

(* add entry for function name into the string map *)

StringMap.add _name

{

typ = _ret_type; (*type *)

f_name = _name;

f_args = (* create list of args *)

(

let rec bind_funcs = (function

[] -> []

| fst::snd -> (fst, "x", Empty)::(bind_funcs snd))

in

bind_funcs _argtype

);

f_locals = [];

f_statements = []

} map_in

in List.fold_left add_bind StringMap.empty [

(*build in functions: _name, [_argument_types], return types*)

("printn", [Num], Void);

("printm", [Xirtam], Void);

("matmult", [Xirtam; Xirtam], Xirtam);

("matadd", [Xirtam; Xirtam], Xirtam);

(*get and access*)

("matget",[Xirtam;Num;Num], Num);

("matset",[Xirtam;Num;Num;Num], Void);

(*transpose*)

("trans",[Xirtam], Xirtam);

("getrows",[Xirtam], Num);

("getcols",[Xirtam], Num);

("autofill",[Num;Num;Num], Xirtam);

]

in

(* Add function name to symbol table *)

let add_func map fd =

let built_in_err = "function " ^ fd.f_name ^ " may not be defined"

and dup_err = "duplicate function " ^ fd.f_name

and n = fd.f_name (* Name of the function *)

in

(* ensure again that func main is int as well as return type*)

let _ret = {

typ = typ_helper n fd.typ;

f_name = fd.f_name;

f_args = fd.f_args;

f_locals = fd.f_locals;

f_statements = fd.f_statements;

}

in

match fd with (* No duplicate functions or redefinitions of built-ins *)

_ when StringMap.mem n built_in_decls -> make_err built_in_err

| _ when StringMap.mem n map -> make_err dup_err

(* add to prevent user from creating functions with same name as built-in

functions? *)

| _ when n = "printn"

|| n = "printm"

|| n = "matmult"

|| n = "matadd"

|| n = "matget"

|| n = "matset"

|| n = "trans"

|| n = "getrows"

|| n = "getcols"

|| n = "autofill"

-> make_err dup_err

| _ -> StringMap.add n _ret map

in

(* Collect all function names into one symbol table *)

let function_decls = List.fold_left add_func built_in_decls functions

in

(* Return a function from our symbol table *)

let find_func s =

try StringMap.find s function_decls

with Not_found -> raise (Failure ("unrecognized function " ^ s))

in

let _ = find_func "main" in (* Ensure "main" is defined *)

let check_function func =

(*check local vars for duplicates!!!! check for arg duplicates and local var

duplicates*)

check_binds "function argument" func.f_args;

check_binds "local variable" func.f_locals;

let check_assign lvaluet rvaluet err =

if lvaluet = rvaluet then lvaluet else raise (Failure err)

in

(*make symboltable have information about type, name, and whether the variable is

initialized or not*)

let symbols =

List.fold_left

(fun _val (_type, _name, _) -> (StringMap.add _name {

v_type = _type;

v_id = _name;

v_init = false;

} _val)

)

StringMap.empty (globals @ func.f_args @ func.f_locals)

in

(* function args only, use to avoid program seeing function args as uninitialized

*)

let func_arg_symbols =

List.fold_left

(fun _val (_type, _name, _) -> (StringMap.add _name {

v_type = _type;

v_id = _name;

v_init = false;

} _val)

)

StringMap.empty (func.f_args)

in

let type_of_identifier s =

try StringMap.find s symbols

with Not_found -> raise (Failure ("undeclared identifier " ^ s))

in

(* check if vars within expressions where relevant are initialized, return e if ok

maybe do type conversion here?? idk

maybe we want to auto set variables to default value if they r not initialized?

*)

let expr_init_check e_in =

(*fix the error print*)

let init_err _i = ("cannot use unitialized variable "^ _i ^" in expression "^

(string_of_expr e_in)) in

let rec init_check_helper e = match e with

NumLit _ -> true

| BoolLit _ -> true

| StrLit _ -> true

| Empty -> true

| XirtamLit _ -> true (*double check *)

| Id i ->

let var_dat = type_of_identifier i in

let _ = var_dat.v_init <- true in

if (var_dat.v_init = false) && not (StringMap.mem i func_arg_symbols)

then

make_err (init_err i)

else

true

| Call(_, args) -> List.iter (fun _ex -> ignore (init_check_helper _ex)) args;

true

| Unop (_, ex) -> init_check_helper ex

| Binop (e1, _, e2) -> (init_check_helper e1) && (init_check_helper e2)

| Assign (id, _) as _exp ->

let var_dat = type_of_identifier id in

(*set variable as initialized! we need to have let _ = or it won't work*)

let _ = var_dat.v_init <- true

in true

in

ignore(init_check_helper e_in); e_in

in

(* Return a semantically-checked expression, i.e., with a type *)

let rec expr = function

NumLit l -> (Num, SNumLit l)

| BoolLit l -> (Bool, SBoolLit l)

| StrLit l -> (String, SStrLit l)

| Empty -> (Void, SEmpty)

| XirtamLit l ->

(*get list of row lengths in matrix*)

let rec mat_length_list _mat_in = match _mat_in with

XirtamLit x -> List.length x :: mat_length_list (List.hd x)

| _ -> []

in

(*given list of matrix elements, check type and return error if not*)

let check_mat_val_type _mat_val=

let (_typ,_e) = expr _mat_val in

(match _typ with

String -> make_err("no strings allowed in matrices!")

| Bool -> make_err("no booleans allowed in matrices!")

| Xirtam -> make_err("Xirtam Literals are only allowed in matrices!")

| _ -> expr (expr_init_check _mat_val)

)

in

(*turn matrix into flattened single array while checking fo staggered matrix,

i.e., all row must have same col length*)

let rec check_stagger test_col = function

XirtamLit hd::tl ->

let row_len = List.hd test_col in (*same column we compare it to*)

let row_check = List.length hd in (*row we need to check*)

if row_len != row_check then

make_err ("No staggered Matrices allowed, rows must be same size")

else

(check_stagger (List.tl test_col) hd) @ (check_stagger test_col tl)

(*for individual row, which is list, map expr to each matrix element*)

| _mat_row -> List.map check_mat_val_type _mat_row

in

(*get list containing length of matrix rows *)

let mat_rc = mat_length_list (XirtamLit l) in

let _cols_check = List.tl mat_rc in (*get the rest of the cols*)

let _rows = List.hd mat_rc in (*rows*)

let _cols = List.hd _cols_check in (*cols*)

(*map expr to each of the matrix elements*)

(Xirtam,

SXirtamLit (check_stagger _cols_check l, _rows, _cols)

)

| Id s ->

let var_dat = type_of_identifier s in

(var_dat.v_type, SId s)

| Call(fname, args) as call ->

let call = expr_init_check call in

let fd = find_func fname in

let param_length = List.length fd.f_args in

if List.length args != param_length then

raise (Failure ("expecting " ^ string_of_int param_length ^

" arguments in " ^ string_of_expr call))

else let check_call (ft, _) e =

let (et, e') = expr e in

let err = "illegal argument found " ^ string_of_typ et ^

" expected " ^ string_of_typ ft ^ " in " ^ string_of_expr e

in (check_assign ft et err, e')

in

(*call func*)

let _fd_func_args = List.map (fun (_type, f_arg_name, _) -> (_type,

f_arg_name)) fd.f_args in

let args' = List.map2 check_call _fd_func_args args

in (fd.typ, SCall(fname, args'))

| Unop (op, l) as ex ->

let (t, l') = expr (expr_init_check l) in

let ty = match op with

Neg when t = Num -> t

| Not when t = Bool -> Bool

| _ -> raise (Failure ("illegal unary operator " ^

string_of_uop op ^ string_of_typ t ^

" applied to " ^ string_of_expr ex))

in (ty, SUnop(op, (t, l')))

| Binop (e1, op, e2) as e ->

let (t1, e1') = expr (expr_init_check e1)

and (t2, e2') = expr (expr_init_check e2) in

(* Based on the MicroC, all binary operators require operands of the same

type,

However, should we allow type casting between bool and num?

Someone look into this please

*)

let same = t1 = t2 in

(* Determine expression type based on operator and operand types *)

let ty = match op with

Add | Sub | Mult | Div | Mod when same && t1 = Num -> Num

| Equal | Neq when same -> Bool

| Less | Leq | Great | Geq

when same && (t1 = Num) -> Bool (*castable to bool, should we

like python have string "" = false and "asdfasdf" be true?*)

| And | Or when same && t1 = Bool -> Bool

| _ -> raise (

Failure ("illegal binary operator " ^

string_of_typ t1 ^ " " ^ string_of_op op ^ " " ^

string_of_typ t2 ^ " in " ^ string_of_expr e))

in (ty, SBinop((t1, e1'), op, (t2, e2')))

| Assign (id, v) as _exp ->

let var_dat = type_of_identifier id in

let _left = var_dat.v_type in

let (_right, val') = expr (expr_init_check v) in

let err =

"illegal assignment " ^ string_of_typ _left ^ " = " ^ string_of_typ _right

^ " in " ^ string_of_expr _exp

in

(*set variable as initialized! we need to have let _ = or it won't work*)

let _ = var_dat.v_init <- true ;

in (check_assign _left _right err, SAssign(id, (_right, val')))

in

(* check boolean statement*)

let check_bool_expr e =

let (t', e') = expr e

and err = "expected Boolean expression in " ^ string_of_expr e

in if t' != Bool then raise (Failure err) else (t', e')

in

(* Return a semantically-checked statement i.e. containing sexprs *)

let rec check_stmt = function

Expr e -> SExpr (expr e)

| If(p, b1, b2) -> SIf(check_bool_expr (expr_init_check p), check_stmt b1,

check_stmt b2)

| For(e1, e2, e3, st) ->

SFor(expr (expr_init_check e1), check_bool_expr (expr_init_check e2), expr

(expr_init_check e3), check_stmt st)

| While(p, s) -> SWhile(check_bool_expr (expr_init_check p), check_stmt s)

| Return e -> let (t, e') = expr (expr_init_check e) in

(match func.f_name with

(*The user should not give main a return value*)

"main" -> make_err ("function main should not have a return value!")

| _ ->

if t = func.typ then

SReturn (t, e')

else

make_err("return gives " ^ string_of_typ t ^ " expected " ^

string_of_typ func.typ ^ " in function" ^ string_of_expr e)

)

(* A block is correct if each statement is correct and nothing

follows any Return statement. Nested blocks are flattened. *)

| Block sl ->

let rec check_stmt_list = function

[Return _ as s] -> [check_stmt s]

| Return _ :: _ -> raise (Failure "nothing may follow a return")

| Block sl :: ss -> check_stmt_list (sl @ ss) (* Flatten blocks *)

| s :: ss -> check_stmt s :: check_stmt_list ss

| [] -> []

in SBlock(check_stmt_list sl)

in (* body of check_function, get expression for assignment *)

let arg_helper (_type,_name,_val) = (_type,_name, expr _val)

in

{ styp = typ_helper func.f_name func.typ;

sf_name = func.f_name;

sf_args = List.map arg_helper func.f_args;

sf_locals = List.map arg_helper func.f_locals;

sf_statements = match check_stmt (Block func.f_statements) with

SBlock(sl) -> sl

| _ -> raise (Failure ("internal error: block didn't become a block?"))

}

in (globals, List.map check_function functions)

testall.sh

#!/bin/sh

Authored by Andrew Gorovoy, Annie Wang.

Citation: based on MicroC test script.

Regression testing script for Xirtam

Step through a list of files

Compile, run, and check the output of each expected-to-work test

Compile and check the error of each expected-to-fail test

Path to the LLVM interpreter

LLI="lli"

#LLI="/usr/local/opt/llvm/bin/lli"

Path to the LLVM compiler

LLC="llc"

Path to the C compiler

CC="cc"

Path to the xirtam compiler. Usually "./xirtam.native"

Try "_build/xirtam.native" if ocamlbuild was unable to create a symbolic link.

XIRTAM="./xirtam.native"

#XIRTAM="_build/xirtam.native"

Set time limit for all operations

ulimit -t 30

globallog=testall.log

rm -f $globallog

error=0

globalerror=0

keep=0

Usage() {

echo "Usage: testall.sh [options] [.xirt files]"

echo "-k Keep intermediate files"

echo "-h Print this help"

exit 1

}

SignalError() {

if [$error -eq 0] ; then

echo "FAILED"

error=1

fi

echo " $1"

}

Compare <outfile> <reffile> <difffile>

Compares the outfile with reffile. Differences, if any, written to difffile

Compare() {

generatedfiles="$generatedfiles $3"

echo diff -b $1 $2 ">" $3 1>&2

diff -b "$1" "$2" > "$3" 2>&1 || {

SignalError "$1 differs"

echo "FAILED $1 differs from $2" 1>&2

}

}

Run <args>

Report the command, run it, and report any errors

Run() {

echo $* 1>&2

eval $* || {

SignalError "$1 failed on $*"

return 1

}

}

RunFail <args>

Report the command, run it, and expect an error

RunFail() {

echo $* 1>&2

eval $* && {

SignalError "failed: $* did not report an error"

return 1

}

return 0

}

Check() {

error=0

basename=`echo $1 | sed 's/.*\\///

s/.xirt//'`

reffile=`echo $1 | sed 's/.xirt$//'`

basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

echo -n "$basename..."

echo 1>&2

echo "###### Testing $basename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.ll ${basename}.s ${basename}.exe

${basename}.out" &&

Run "$XIRTAM" "$1" ">" "${basename}.ll" &&

Run "$LLC" "-relocation-model=pic" "${basename}.ll" ">" "${basename}.s" &&

Run "$CC" "-o" "${basename}.exe" "${basename}.s" "matrix.c" &&

Run "./${basename}.exe" > "${basename}.out" &&

Compare ${basename}.out ${reffile}.out ${basename}.diff

Report the status and clean up the generated files

if [$error -eq 0] ; then

if [$keep -eq 0] ; then

rm -f $generatedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2

else

echo "###### FAILED" 1>&2

globalerror=$error

fi

}

CheckFail() {

error=0

basename=`echo $1 | sed 's/.*\\///

s/.xirt//'`

reffile=`echo $1 | sed 's/.xirt$//'`

basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

echo -n "$basename..."

echo 1>&2

echo "###### Testing $basename" 1>&2

generatedfiles=""

generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&

RunFail "$XIRTAM" "<" $1 "2>" "${basename}.err" ">>" $globallog &&

Compare ${basename}.err ${reffile}.err ${basename}.diff

Report the status and clean up the generated files

if [$error -eq 0] ; then

if [$keep -eq 0] ; then

rm -f $generatedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2

else

echo "###### FAILED" 1>&2

globalerror=$error

fi

}

while getopts kdpsh c; do

case $c in

k) # Keep intermediate files

keep=1

;;

h) # Help

Usage

;;

esac

done

shift `expr $OPTIND - 1`

LLIFail() {

echo "Could not find the LLVM interpreter \"$LLI\"."

echo "Check your LLVM installation and/or modify the LLI variable in testall.sh"

exit 1

}

which "$LLI" >> $globallog || LLIFail

if [! -f printbig.o]

then

echo "Could not find printbig.o"

echo "Try \"make printbig.o\""

exit 1

fi

if [$# -ge 1]

then

files=$@

else

files="tests/test-*.xirt tests/fail-*.xirt"

fi

for file in $files

do

case $file in

test-)

Check $file 2>> $globallog

;;

fail-)

CheckFail $file 2>> $globallog

;;

*)

echo "unknown file type $file"

globalerror=1

;;

esac

done

exit $globalerror

xirtam.ml

