
VIPER
An amalgamation of our favorite programming quirks

Tommy Gomez, Trey Gilliland, Mustafa Eyeceoz,
Matthew Ottomano, Raghav Mecheri

AN OVERVIEW

WHY VIPER?

Tradeoff: compiled vs interpreted
Finding the perfect compromise for speed vs
convenience

WHAT DID WE WANT?

Top level executed code
In built data structures
Static typing for both speed and eliminating errors

VIPER
Strongly, statically, typed

Library support for data-structures

Support for ternaries/guard expresions, loop
iterators + syntactic sugar
Support for arrow functions

Restrictive scoping to allow for namespace conflicts

VIPER'S STRUCTURE

STRUCTURE

The body of a Viper program consists of statements,
and functions
You can write code outside main!
Globals are not accessible within functions,
preventing Python-esque namespace conflicts

FUNCTION CALLS

Support for function definitions and function calls
Support for arrow functions

CONTROL FLOW/ITERATION

Support for if statements, as well as guards and
ternary operators
Supports for standard looping as well as iterators
(for...in)
Support for skip (continue in Java) and abort (break
in Java)

SCOPING

Viper eliminates the global scope from within
function bodies, eliminating the ambiguity that
comes with global variables
Support for function overloading

TYPE SYSTEM

SUPPORTED TYPES
int, float, bool, char, string, nah

Datatype Memory

int 4 bytes

float 4 bytes

bool 1 byte

char 1 bytes

string n/a

nah n/a

ADDITIONAL DATA STRUCTURES
lists, dictionaries

VIPER'S STANDARD LIBRARY

Viper uses the Viper C standard library as an API to
enable in-memory data structures
Support for lists, dicts, math functions, and type-
casting
Built-in functions like print

Viper's lists are implemented as arraylists, and
Viper's dicts are implemented as lookup tables that
allow for for nested dictionaries as well
Support for in-built in type-specific functions like
len, contains, append, etc

NOTABLE FEATURES

GUARD EXPRESSIONS
int y = 0;

int test = ??
 y < 0 : 0
| y > 0 : 10
?? 5;

ITERATORS

int[] arr = [1,2,3,4];
for(int f in arr) {
 print(f)
}

TERNARY OPERATORS
int val = 10;
int positive = val < 0 ? 0 : val

ARROW FUNCTIONS
int func add(int x, int y) => x + y;

COMPILER ARCHITECTURE

HANDLING SYNTACTIC SUGAR

Viper has a lot of features that we were able to reduce

to just syntactic sugar, to make the work easier when
we need to generate LLVM

OVERVIEW

Viper's desugar module runs via two passes, in order
to break down more complex expressions before

Codegen

OVERVIEW: FIRST PASS

All of Viper's various for loops are reduced to while
loops
Arrow Functions are reduced to regular function
calls

Guard expressions are reduced to nested ternaries
Attribute calls are decomposed to regular function
calls [a.foo(b) -> foo(a, b)]

OVERIVEW: SECOND PASS

Viper's second pass serves only to convert all types of
ternary operators into nested if statements

Iterate through all the statements in a file
Detect instances of expresions that contain ternary
operators

Insert a replacement if statement coupled with an
assignment operator at the statement right before the

statement that contains the ternary, via a
PretendBlock

Viper uses PretendBlocks to insert blocks for which
a reduced scope is not required - the SAST module

ignores the change in scope

BUILDING THE SAST

HIGHLIGHTS

Checks for duplicate and nah declarations
Allows for function overloading
Global statements

Declarations inside of loops
Entirely complete representation of anything that
the AST throws at it

CHALLENGES FACED
The scoping for Viper is difficult to semantically check
since we allow declarations inside of loops. Each time
we enter a loop, we need to scan the declarations to

add to the symbol table incase they are called in the
loop. Using symbol table parents allow us to keep

track of declarations outside of the current scope and
throws away deeper scopes once the program leaves a

loop.

CODEGEN

HIGHLIGHTS

Once I understood the workflow and how to use our
C standard library functions I covered ground very
quickly
Efficient implementation for operations like Incr,
Decr, OpAssigns

Pointer Casting written in bindings for SAccess and
other expressions
Skip/Abort implemented!

CHALLENGES FACED

Majority of codegen work done very late in the
process due to needing types of expressions from
SAST
OCAML LLVM Documentation is very sparse

Figuring out the LLVM workflow (write program ->
compile to llvm with clang -> lookup instructions in
documentation -> build similar instructions using
OCaml bindings)

FUTURE WORK

Allowing for imports of files/modules
Support for other C-based libraries (numpy,
tensorflow)
Improve limited casting functionality/support
Fixing all the bugs that keep cropping up

DEMO PROGRAMS

