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About the Language



Language Overview & Motivation

● Reptile is a programming language that is 
intended to support libraries that streamline 
the process of creating simply-coded graphics.

● Goal: to build upon the success of “beginner” 
programming languages, like Swift 
Playgrounds and Scratch, and libraries like 
Python Turtle to provide immediate 
gratification to the coders through graphics. 



Key Language Features

● Java-like syntax
○ Strict-typing
○ Recursion

● Complex Types
○ RGB
○ Pointer
○ Canvas

● Built-in functions
● Production of PNG file PLT or Architecture studio?



Complex Types

● RGB (int r, int g, int b)
○ Takes 3 int arguments to define color of pixels to be drawn

● Pointer (int x, int y, struct rgb* color, float angle)
○ Takes 2 int arguments to define starting position of pixel, 1 pointer to an Rgb struct to 

define color, 1 float argument to define an angle

● Canvas (int x, int y)
○ Takes 2 int arguments to define length and width dimensions of the PNG



Production of PNG

● Libattopng C Library
○ Used several functions to create, modify pixels, and save png, and clean up after:

■ libattopng_new()
■ libattopng_set_pixel()
■ libattopng_save()
■ libattopng_destroy()

● Built-in functions
■ pixel()
■ save()



About the Compiler



Architectural Design



Code



let rgb_t      = L.pointer_type(L .struct_type context  

[| i32_t ; i32_t; i32_t |]) in

 let pointer_t  = L.pointer_type(L .struct_type 

context [| i32_t ; i32_t ; rgb_t ; float_t |]) in

 let canvas_t   = L.pointer_type(L .struct_type 

context [| i32_t ; i32_t |]) in
 let pixelcons_t : L.lltype =

     L.function_type canvas_t  [| canvas_t ; rgb_t; i32_t ; i32_t |] in

 let pixelcons_fun : L.llvalue =

     L.declare_function "pixel" pixelcons_t the_module in

| SCall ("get_rgb_r", [rgb;]) ->

       let build_t : L.lltype =

         L.function_type i32_t [|rgb_t;|] in

           let build_func : L.llvalue =

             L .declare_function "get_rgb_r" build_t the_module in

         L.build_call build_func [| expr builder locals rgb |]

           "get_rgb_r" builder

Code Generation



struct Canvas {

   int x;

   int y;

   libattopng_t *png;

};

struct canvas* Canvas(int x, int y) {

   struct canvas *can = malloc(sizeof(struct canvas));    

   can->x = x;

   can->y = y;

   can->png = libattopng_new(x, y, PNG_RGBA);

   return can;

}

Struct Definitions & Constructor



#define RGBA(r, g, b, a) ((r) | ((g) << 8) | ((b) << 16) | ((a) << 24))

struct canvas* pixel(struct canvas* can, struct rgb* color, int x, int y) 

{

   libattopng_set_pixel(can->png, x, y, RGBA(get_rgb_r(color) & 255, 

get_rgb_g(color) & 255, get_rgb_b(color) & 255, (255 )));

   return can;

}

void save(struct canvas* can, char *filename) {

   libattopng_save(can->png, filename);

   libattopng_destroy(can->png);

}

Built-in Functions



int xcur;

int ycur;

int tortup(Canvas can, Rgb color, int distance) {

   int counter = 0;

   while(counter < distance) {

       pixel(can, color, xcur, ycur-counter);

       counter = counter + 1;

   }

   ycur = ycur - distance;

   return 0;

}

int tortdown(Canvas can, Rgb color, int distance) {

   int counter = 0;

   while(counter < distance) {

       pixel(can, color, xcur, ycur+counter);

       counter = counter + 1;

   }

   ycur = ycur + distance;

   return 0;

}

Tortoise Library (.rt)

int tortSE(Canvas can, Rgb color, float distance) {

   int counter = 0;

   float counter1 = 0.0;

   float step = distance * 0.707;

   while(counter1 < step) {

       pixel(can, color, xcur+counter, ycur+counter);

       counter1 = counter1 + 1.0;

       counter = counter + 1;

   }

   xcur = xcur + counter;

   ycur = ycur + counter;

   return 0;

}

int movetort(int x, int y) {

   xcur = x;

   ycur = y;

   return 0;

}



Demo



Demonstration of Coolest Reptile Program

~61,000 lines



Demonstration of the Second Coolest Reptile Program

featuring Tortoise



Conclusion



How did we get things to work?

● Several tests were used to test for the functionality of the basics (if/else 
statements, recursion, general arithmetic, scope, and more). 

int main(){
int i = 15;
return i; 
i = 32;

}



Integration Testing

● Once we were able to generate code, we began to test the functionality of our structs, built-in 
functions, and creation of png files. 

int main() {

Canvas can = Canvas (400, 400); 

Rgb color = Rgb(0, 0, 0); 

pixel(can, color, 200, 200);

save(can, “pixeltest.png”);

return 0;

}



Future Work

● Tortoise object 
○ Object that serves as a visual Pointer (complex type) to indicate current positions and where 

pixels are being drawn
● Enable live drawing

○ Users can see the Tortoise object drawing each pixel once a command is completely typed
● User-defined Structs

○ Users can define their own object types and personalize the texture of the drawing, special 
effects, and more. 



Questions?


