
Racontr
The Racontr Programming Language

Programming Languages and Translators Final Report
Spring 2021

Morgan Zee (mbz2112), Shirley Ye (sy2650), Saumya Agarwal (sa3656), Xinye Jiang (xj2253),
Janelle Ponnor (jp4024)

1

Table of Contents

1. Introduction
1.1 Overview of Racontr……………………………………………………………… 4
1.2 Goals and Motivations……………………………………………………………. 4

2. Racontr Tutorial
2.1 Environment Setup………………………………………………………………... 4
2.2 Downloading and Building Racontr………………………………………………. 5
2.3 Writing and Compiling a Simple Program………………………………………… 5
2.3 Debugging Options………………………………………………………………… 6

3. Language Reference Manual
3.1 Lexical Conventions………………………………………………………………… 6

3.1.1 Comments………………………………………………………………... 6
3.1.2 Identifiers……………………………………………………………….... 6
3.1.3 Keywords/Type Specifiers………………………………………………… 7
3.1.4 Constants & Literals……………………………………………………… 7
3.1.5 Operators….……………………………………………………………… 8

3.2 Data Types………………………………………………………………………….. 8
3.2.1 Scene……………………………………………………………………… 8
3.2.2 Item……………………………………………………………………… 9
3.2.3 Character………………………………………………………………… 9

3.3 Statements and Expressions………………………………………………………… 10
3.3.1 Conditional Statements…………………………………………………… 11
3.3.2 Declaration Statements………………………………………………… 12
3.3.3 Expressions………………………………………………………………...13

3.4. Standard Library………………………………………………………………… 14
3.4.1 List………………………………………………………………… 14
3.4.2 Strings………………………………………………………………… 14
3.4.3 Properties………………………………………………………………… 15
3.4.4 Built-in Property types…………………………………………………… 15

3.5. Sample Code………………………………………………………………… 15

4. Project Plan
4.1 Planning, Specification, Development, and Testing…………………………………16
4.2 Style Guide………………………………………………………………...…………16
4.3 Software Development Environment……………………………………………… 16
4.4 Team Roles and Responsibilities…………………………………………………… 17
4.5 Project Timeline …………………………………………………………………… 17

2

5. Architectural Design………………………………………………………………...……
5.1 Block Diagram………………………………………………………………...…… 18
5.2 Scanner………………………………………………………………... ……………18
5.3 Parser and Semantic Checker……………………………………………………… 19
5.4 Code Generation………………………………………………………………...… 19

6. Testing
6.1 Unit Testing………………………………………………………………..…………19
6.2 Example Test Programs…………………………………………………………… 20

7. Language Evolution
7.1 Initial Thoughts………………………………………………………………..…… 22
7.2 Narrowing Down the Scope………………………………………………………… 22
7.3 Syntax Design Choices………………………………………………………………22
7.4 Design Summary…………………………………………………………………… 23

8. Lessons Learned
7.1 Janelle……………………………………………………………………………… 23
7.2 Saumya……………………………………………………………………………… 24
7.3 Shirley……………………………………………………………………………… 24
7.4 Xinye…………………………………………………………………………………24
7.5 Morgan……………………………………………………………………………… 25

9. Appendix
9.1 racontr.mll………………………………………………………………...………… 26
9.2 scanner.mll………………………………………………………………...…………
9.3 ast.mll………………………………………………………………...…………...…
9.4 parser.mly ………………………………………………………………...…………
9.5 sast.ml ………………………………………………………………...…………..
9.6 semant.ml ………………………………………………………………...…………
9.7 codegen.ml ………………………………………………………………...……
9.8 Makefile ………………………………………………………………...…………
9.9 testall.sh ………………………………………………………………...…………..
9.10 Tests ………………………………………………………………...…………...…

3

1. Introduction

1.1 Overview of Racontr

The Racontr programming language allows users to design and implement their own creative
text adventure games. Racontr is fairly dynamic and can be used to develop stories with
customizable people, places, and things. The adventure that players can embark on will be in the
hands of the programmer, who can either provide the user with predefined storylines that vary
depending on what option the user selects or allow the player to decide how the story unfolds.

1.2 Goals and Motivations

Racontr is inspired by projects done by students in previous semesters, including GAWK (2014),
a language used to build role-playing games, and GRIMM (2004), an interactive story-building
language. In particular, we used the sample games from GRIMM as a key example of a potential
game that can be implemented in Racontr. We paid attention to their type declarations, assigning
attributes to specific objects, and conditional statements. We also adapted elements from existing
programming languages like Python, in terms of syntax and functionalities, and the interactive
fiction programming language ZIL, specifically in terms of creating objects and using Boolean
flags to enable specific manipulations of objects. We followed the basic structure of the
Language Reference Manual of Coral (2018) and the C Reference Manual.

In terms of goals, we hope Racontr will 1.) allow users to easily define and customize people
(characters), places (scenes), and things (items) to build creative scenarios, 2.) be easier to build
text-adventure games than existing object-oriented languages, and 3.) incorporate slightly
adapted, yet familiar syntax from Python to maximize simplicity and ease of use.

We have drawn on elements from the existing languages and interactive fiction experiences
discussed above to develop Racontr, which we hope programmers and players alike will use to
have fun and expand their creativity.

2. Racontr Tutorial

Start by downloading the folder containing the files for Racontr. The following tutorial
contains instructions to set up your environment and compile Racontr.

2.1 Environment Setup

4

Before getting started, make sure to install Ocaml and LLVM, which can be installed on a
Mac OS with the commands

brew install opam
brew install llvm
opam install llvm

Other methods include downloading the Docker Desktop or installing Homebrew and
running the command

brew install docker

We used the microc docker image provided by columbiasedwards/plt. Navigate to the
directory of the project files and activate the docker container by running

docker run --rm -it -v `pwd`:/home/hello5 -w=/home/hello5
columbiasedwards/plt

This will activate the microc docker image and open a container that can be used to run
Ocaml. Ensure that you are inside the docker container: /home/hello5#

2.2 Downloading and Building Racontr

First build the racontr.native file using the following command

ocamlbuild -use-ocamlfind racontr.native

You can compile the Racontr compiler using the following command

make

2.3 Writing and Compiling a Simple Program: Helloworld

After compiling Racontr, you can write your own programs! The Language Reference
Manual in the following section will provide syntax guidelines and instructions for
writing programs in the Racontr language.

5

https://www.docker.com/products/docker-desktop

For now, here are instructions to implement your first Racontr program. Start by creating
a file called helloworld.rac and copy and paste the following code onto it:

var helloworld : string = "helloworld"

print_string(helloworld)

To compile and run this code, type the following commands into your terminal

ocamlbuild -use-ocamlfind racontr.native
make

You can create a helloworld.out file containing the expected output “helloworld” to
compare with the output of your helloworld.rac code.

2.4 Debugging Options

If you run into problems along the way, you will see errors listed in the terminal. Use the
following command

cat testall.log

to access more details about the encountered errors, which can be used for debugging.

3. Language Reference Manual

3.1 Lexical Conventions

There are five kinds of tokens: comments, identifiers, keywords, constants, operators. In general
blanks, tabs, newlines, and comments as described below are ignored except as they serve to
separate tokens. At least one of these characters is required to separate otherwise adjacent
identifiers, constants, and certain operator-pairs. If the input stream has been parsed into tokens
up to a given character, the next token is taken to include the longest string of characters which
could possibly constitute a token.

3.1.1 Comments

6

The characters /* introduce a comment, which terminates with the characters */. They do not
indicate a comment when occurring within a string literal. Comments do not nest. Once the /*
introducing a comment is seen, all other characters are ignored until the ending */ is encountered.

3.1.2 Identifiers

An identifier, or name, is a sequence of letters, digits, and underscores (_). The first character
cannot be a digit. Uppercase and lowercase letters are distinct. Name length is unlimited. The
terms identifier and name are used interchangeably.

3.1.3 Keywords/Type Specifiers

The following identifiers are reserved for use as keywords, and may not be used otherwise:

return
if
elif
else
for
while
int
bool
string
extends
assert
scene
character
item
in
def
not

3.1.4 Literals/Constants

The three types of constants are integer, string, and boolean. Each constant has a type,
determined by its form and value.

3.1.4.1 Integer constants

An integer constant is a sequence of digits.

7

3.1.4.2 Strings

A string is a sequence of characters surrounded by double quotes ‘‘ " ’’. In a string, the character
‘‘ " ’’ must be preceded by a ‘‘\’’.

3.1.4.3 Booleans

A boolean can have one of two values: true or false. It is used to perform logical operations, most
commonly to determine whether some condition is true. (add boolean literals)

3.1.5 Operators

An operator specifies an operation to be performed. The operators () and { } must occur in pairs,
possibly separated by expressions. An operator can be one of the following:

{ } ()
: , = >=
!= < <=
& |
+ - * /

3.2 Types and Values

Racontr has two types: primitive and reference, and two types of values: primitive values and
reference values.

3.2.1 Primitive Types and Values

The integer type is i32.
The boolean type has two values: true and false.
The string type is a constant literal.
And the void type.

3.2.1.1 Integer Types and Values

The range for an int is from -2147483648 to 2147483647, inclusive.

3.2.1.2 Boolean Types and Values

8

The boolean type represents a logical quantity with two possible values, indicated by the literals
true and false.

3.2.1.3 String Types and Values

The string type is a series of chars surrounded by double quotes.

3.2.2 Reference Types and Values

The reference type is the class type, of which there are two: the class scene and the class
character.

Aside from int, string, boolean, and collection types such as list and array, there are five essential
customized data types that allow the users to define the game: Scene, Item, Character, Mission,
Ending. Related to the five essential data types, supporting property types help define the details;
some of them should be customized by the users, while some of them are built in (mentioned in
6.4).

3.2.2.1 Inheritance

Racontr also supports inheritance between classes by allowing one class to inherit attributes from
a superclass. This would allow situations involving the subclass to have access to the same
instance variables as the superclass as well as additional values that the user can define.

class subclass_identifier extends superclass_identifier{}

3.2.2.2 Objects

An object is a class instance. The reference values are pointers to these objects, and a special null
reference, which refers to no object.

class identifier {
/*type declarations*/
}

3.2.2.3 The Class Scene

Scene is an in built class that contains information about places a player can explore. The user
would be expected to define a collection of scenes that characterize a virtual map of the game.
The Scene contains sub-data types; some of them should be customized, while some of them

9

should be selected from built-in property types. Outside of this class definition, when the user
writes code that involves a class defined beforehand, all contents defined in the class are
available to them.

The syntax for defining a scene is:

class identifier extends Scene {
/*type declarations*/
}

3.2.2.3.1 Name

This contains a string of the scene’s name. Scene’s names are unique.

3.2.2.3.2 Description

This contains text that describes the scenes.

3.2.2.3.3 Action

Users should define a list of actions that the character can make. Each action should be defined
with a line of String. The action can result in a change of Scene, Character’s status, missions’
status, item’s status, and/or achievements’ status, depending on the users’ definition.

3.2.2.4 The Class Character

Character is an in built class containing information about each player. The user would be
expected to define basic attributes of each character, including what items they have access to.
The class character contains sub-data types; some of them should be customized, while some of
them should be selected from built-in property types. Outside of this class definition, when the
user writes code that involves a class defined beforehand, all contents defined in the class are
available to them.
The syntax for defining a character is:

class identifier extends Character{
/* type declarations */
}

3.2.2.4.1 Name

This contains a String of the character’s name. Characters’ names are unique.

10

3.2.2.4.2 ID

This is an ID for the character. This differentiates different characters.

3.3 Statements and Expressions

There are various types of statements and expressions that can be written in Racontr. These
include conditional statements, declaration statements for defining variables and functions, and
assignment statements. Racontr also makes use of binary operators to write useful expressions.

3.3.1 Conditional Statements

In Racontr, users can utilize various conditional statements, including if, elif, and else
statements, for loop statements, and while loop statements. These statements align closely with
the clear and concise syntax and functionality of the conditional statements provided in Python.

3.3.1.1 If, Elif, Else Statements

Racontr supports if, elif, and else statements. If statements begin with a conditional predicate or
expression followed by a collection of statements enclosed in curly braces {}. The collection of
statements of the conditional are indented and describe actions to if the predicate is met. If the
conditional predicate evaluates to True, then the statements within the curly braces are evaluated
and executed. If the conditional predicate evaluates to False, the program will continue to the
next statement. The next statement could be an additional special condition that the user wants to
define for the same variable tested in the if statement. The syntax will match the if statement, but
will begin with the keyword elif. There is also the option to insert a final statement following the
same syntax but starting with the keyword else. If neither the if and elif conditions evaluate to
True, the program will execute the statements enclosed in the curly braces of the else condition.

The syntax for defining if, elif, and else conditional statements in Racontr would appear as
follows:

if expression {
/*then-statements*/

}
elif expression {

/*then-statements*/
}

11

else {
/*else-statements*/

}

3.3.1.2 For Loop Statements

Racontr supports for loop statements, which start with the word for, followed by an expression
that indicates when the loop begins, an expression that indicates when the loop should end, and
an expression that indicates how much the start expression should increment with each loop, all
enclosed in parenthesis. Until the loop has incremented to the stop-expression value, the
statements within the loop are evaluated.

for (start_expression; stop_expression; increment_expression) {
/* statement */

}

The start-expression specifies the counter variable initialization for the loop; the stop-expression
specifies when the loop should run, and this expression is checked before each iteration, so the
loop only proceeds while the expression is true; the increment-expression specifies by how much
the counter variable (initialized in the start_expression) should be incremented after each
iteration.

3.3.1.3 While Loop Statements

Racontr also supports while loop statements, which start with the word while, a conditional
predicate, and a collection of statements. As long as the condition evaluates to True, the
statements within the loop are continuously evaluated. The program continues beyond the loop
when the condition is False.

A sample of a while loop statement in Racontr would appear as follows:

while expression {
/*statements*/

}

3.3.2 Declaration Statements

3.3.2.1 Variable Declaration and Assignment Statements

12

Racontr allows users to define variables using three keywords made up of the string data type.
These keywords include character, scene, and item. Users can create characters by using the
keyword character followed by the name of the character. The characters can interact with one
another, move between scenes, and possess various items. In a similar way, users can use the
keyword scene followed by a location and the keyword item followed by a thing to create these
variables as well.

Users can take these declarations further by assigning specific attributes or details to the people,
places, or things they construct. These attributes or assignment statements are enclosed in curly
braces and exist whenever the object of type character, scene, or item is called. The assignment
statements include the variable name, followed by an equals sign operator, and an expression
such as a string or a list. The sample code below shows a series of assignment statements that are
used to customize a scene. It is also worth noting the Global variables, objects that can exist in
multiple scenes, and Local variables, objects that only exist in the specified scene, can also be
declared as shown below.

var identifier : type = string literal

3.3.2.2 Function Calls and Declaration Statements

Functions are declared with the keyword def, followed by an identifier, parenthesis, and braces.
The contents of the function can be a series of statements, which will be carried out if the
function is called. Arguments can be passed into the function within the parenthesis.

A sample of declaring a function in Racontr would appear as follows:

def identifier(parameter: type)-> return type{
/*statements*/

}

3.3.3 Expressions

The main expressions Racontr uses are identifiers (similar to variables), strings, and constants
(integers, booleans). Racontr expressions are evaluated from left to right and follow the standard
precedence of operators, which is:

{ } ()
; , ==

13

= < <= & |
*
+ -

3.3.3.1 Binary Operators

Racontr supports arithmetic operators: Plus (+), Minus (-), Times (*). These operators appear
between expressions.

expr + expr
expr - expr
expr * expr
It supports comparison and equality operators: Equals (=), Less than (<), and Less than equals
(<=). These statements evaluate to True if the comparison is True and False otherwise.

expr == expr
expr < expr
expr <= expr

It supports logical Boolean operators: and, or, not.

expr and expr
expr or expr
not expr

3.4. Standard Library

3.4.1 List

Racontr has a built-in list data structure with dynamic length. Lists in Racontr can only hold
elements of the same type and behave identically to Python lists, and support the following
operations:

Method Type of x Behavior

list[x] int Returns the xth element

list.append[x] object Adds element x to the end of the list

list.remove[x] object Removes element x from the list

14

list.count() - Returns the length of the list

3.4.2 Strings

Class Strings in Racontr can be printed.

3.4.3 Properties

Properties make up the object definitions of scenes, characters, and things in Racontr. This class
has four main functions that allow users to handle properties of an object.

Method Type of x Behavior

getp[x] object Check if object has property; If
there is a property, returns
information on property x of an
object

putp[x] property Add property x to an object

memp[x] property Change property x of an object to a
newly defined one

3.5 Sample Code

Below is the code for Racontr’s Hello World game. It prints out “helloworld”.

var helloworld : string = “hello world”
print_string(helloworld)

Below is the code to write a Fibonacci program in Racontr.

def fib(n : i32) -> i32 {
if n == 1 || n == 0 {

return 1
}
return fib(n - 1) + fib(n - 2)

}

15

var fib_result : i32 = fib(10)
print_int(fib_result)

4 Project Plan

4.1 Planning, Specification and Development

Our group had weekly meetings to check-in with our progress and make sure that everyone was
on the same page about next steps. We also met with our project advisor, Professor Edwards who
ensured that the timeline and scope of our project was reasonable and advised us on how to
implement our project ideas. He helped us debug and compile many of our files. At the
beginning of the semester, we were very ambitious with our language design. With Professor
Edwards’ help, we were able to narrow down the scope of our language to ensure that we would
be able to implement the most important features of our language.

During our team meetings, we discussed the goals and needed steps to implement Racontr. We
also helped each other troubleshoot any issues that we were having and talked about options for
resolving any bugs in our code.

Our day to day communication happened over GroupMe. This allowed us to work efficiently and
communicate time sensitive concerns or questions about our language implementation.

4.2 Style Guide

We followed the following style guidelines while developing our compiler:

● Indent clearly.
● Use descriptive variable names to make it easier to understand the code.
● Simplify programs when and if possible.

4.3 Software Development Tools

We used the following programming and development environments when creating Racontr:

• Libraries and Languages: Ocaml Version 4.12.0 including Ocamlyacc and Ocammllex and
LLVM was used.
• Software: Development was done in vim, Sublime and VSCode.
• OS: Development was done on MacOS 10.14.6.

16

4.4 Roles and Responsibilities

Team Member Role & Responsibilities

Janelle Ponnor Test Designer, LRM, Makefile, Parser,
Scanner, AST, Semant, Codegen, Test Cases,
Final Report

Morgan Zee Manager, LRM, Parser, AST, SAST, Scanner,
Semant, Codegen, Racontr.ml, Makefile,
Final Report

Saumya Agarwal System Architect, AST, Scanner, Parser,
Semant, Final Report

Shirley Ye Language Guru, LRM, Codegen, AST, Final
Report, Test Cases

Xinye Jiang System Architect, Codegen, Semant, Final
Report

We wanted to take on a more collaborative approach and every team member was expected to
contribute to every file in the compiler. We often worked on whatever needed to be completed
over a Zoom call.

4.5 Project Timeline

Jan 26 - Initial Discussion to decide language
Feb 3 - Language Proposal
Feb 23 - LRM and parser
March 7 - Continued parser, first implementation of AST, scanner
March 15 - Continued parser, Semant, first implementation of Codegen, Makefile
March 24 - Continued Semant, SAST, Codegen
April 10 - Codegen
April 20 - Test cases
April 25 - Worked on presentation and final report

*Approximate timeline: continued working on each file in the compiler throughout the semester

5 Architectural Design

17

5.1 Block Diagram

5.2 Scanner

File: racontrscanner.mll

The scanner takes in the program file and tokenizes it into literals, identifiers and keywords.
Comments are removed during this stage. The scanner throws an error for unimplemented
python keywords and syntactically invalid identifiers or literals.

5.3 Parser

File: parser.mly

18

The parser is written in Ocamlyacc. The parser converts the tokens from the scanner to an
abstract syntax tree (AST) based on Racontr’s context-free grammar rules for syntax described in
the Language Reference Manual. If any violations are detected, such as unmatched parentheses,
parser errors will be thrown.

5.4 Semantic Checker

File: semant.ml

The semantic checker recursively traverses the AST and converts it to a semantically - checked
abstract syntax tree (SAST) consisting of objects. An environment record is used to map a string
identifier to an object stack. If there are typing or scoping errors, messages will be printed to
indicate the type of errors. For example, if variables are referenced before initialization or
assigned a different type than what was declared, the semantic checker will generate errors.

5.5 Code generation

File: racontrcodegen.ml

The code generator takes in the semantically checked SAST and builds the LLVM. For objects
with known types, the data itself is simply placed on the stack. External functions are declared,
functions prototypes are defined, and allocates formal arguments and local variables inside the
file. We also define some global variables uniquely for the language to build the storylines.
Additionally, expressions, operators, built-in functions, and if/while statements are instructed to
LLVM. If we want to add more functions to the language, we can easily extend the
build_function_body with the added features.

6. Test Programs

Racontr’s test cases are in the tests/ folder. The successful test cases start with test-*.rac and the
test cases that should fail start with fail-*. Janelle, Morgan, and Shirley worked on the test cases.
The expected output for each testing file will have the same name as the testing file, but the
extension is .out. testall.sh is a shell script taken from microc. For successful test cases, it
compares the output file with the output achieved and for test cases supposed to fail, it compares
the error achieved with the expected error in the corresponding .err file.

6.1 Motivation Behind Test Cases

19

We started off our testing by creating the hello world program, test-basic.rac. The hello
world program simply prints out a variable which the string “hello world” is assigned to.
There are no class declarations.
Then, we decided to create a test program that has only class declarations as a valid
program. This program, test-classdecls.rac, contains two class declarations but no body
statements and does not have any expected output. For each successful test case, we
created a failing test case as well to ensure that the compiler was indeed searching for
correct and valid syntax.
We then created a more complicated test case, test-hello.rac, that was a compilation of
various features of Racontr. This included fibonacci, while loops, if else statements, class
declarations, and printing a string. This not only ensured that each singular component
worked on its own, but it also ensured the validity of the structure of our program and
that one program is able to have multiple parts that function in different ways.

6.2 Example Test Programs

test-classdecls.rac
This program shows how having only class declarations still makes a valid

program.

class Player1 extends Character {
var name : string = "player1"

}

class Butler extends Scene {
var name : string = "Butler Library"

}

Output of test-classdecls.rac: No Output

test-hello.rac
This program shows how different functionalities in Racontr can be successfully
implemented in one program.

class Player1 extends Character {
var name : string = "player1"

}

20

class Butler extends Scene {
var name : string = "Butler Library"

}

var hello : string = "hello"
var world : string = "world"

var state : bool = false

var s : string = "aaa"

var one : i32 = 1
var two : i32 = 2
var one_bigger_two : bool = one > two

var count : i32 = 10
while count > 0 {

print_int(count)
count = count - 1

}

if one_bigger_two {
s = hello

} else {
s = world

}

print_string(s)

Output of test-hello.rac:
10
9
8
7
6
5
4
3

21

2
1
world

fail-helloworld.rac
This program contains the hello world program written incorrectly. It fails because
our print function is print_string not print.

print("hello")

Error of test-hello.rac: Fatal error: exception Not_found

7. Language Evolution

7.1 Initial Thoughts

We first came up with the idea of making a text producing language since all of our team
members are interested in text generators. Some of us wanted a story generator: a generator that
preferably utilizes deep learning and natural language processing to write stories and poems
according to the user’s prompts. But after communicating with the professor and TAs, we
decided to forego deep learning for now since it requires heavy workload but it is a feature we
can consider to add in the future.

7.2 Narrowing Down the Scope

After deciding on making an interactive text editor, we started to explore what kind of stories we
all enjoy and finally, decided on adventure stories. Soon after, we came up with a better idea, an
adventure game editor: we have seen story generators, web-page based interactive text games,
but not really a language designed for the general public to create text games. Moreover, some of
us are really familiar with adventure text games, such as Dragon and Dungeon and Call of
Cthulhu. Typically, in those kinds of games, there would be a “narrator” who tells the
background story, some protagonists to unravel the truth of the story, some places for the
protagonists to explore, and some villain for them to defeat in the end. Having this format in
mind, we began to draw the blueprint of Racontr and started defining the prototypes.

7.3 Syntax Design Choices

Just as we mentioned in the last paragraph, inspired by Dragon and Dungeon and Call of
Cthulhu, we defined two inbuilt classes: character and scene. We had initially planned for more

22

classes like mission, achievement, and ending; however, we realized that they would be far too
complicated for us to implement this semester. We decided to require all class declarations at the
start of the program so the programmer can reference them later on. A character describes a
player created or programmer created characters in the game: such as the protagonist that the
player controls, or the villain that is pre-set by the programmer. Under the objects definition, we
also have the character’s name, type, description and more definitions to illustrate one instance.
A scene, as we suggested above, describes a place that is usually interactable with the player
created characters.

7.4 Design Conclusions

We still have many object types we wish to implement but have not, and features including
natural language processing that we could not include for now. We built a simplified version of
our initial design but we still believe in the potential and will develop on top of it with these
ideas in mind. Moreover, for now our language only provides text-based interactions, but we can
also use UNITY or UNREAL to create a visualized format for the user to interact with, simply
by defining the data and function with our language. This could be complicated since it involved
3D modeling, but as we narrowed down our stories to adventure ones, visualization could be
possible and should not be too difficult to achieve.

8. Lessons Learned

8.1 Janelle

I definitely learned a lot throughout the course of this project, be it through the mistakes or
through the successes. The biggest lesson would be to be more considerate of implementation
details from the start of the project because this makes our goals more realistic. Another lesson
learned is to use the time zone difference to our advantage. Three group members are in EST and
two are in China Standard Time (12 hours ahead of EST). Sometimes, such a drastic time zone
difference allowed gaps in our communication because it was difficult to find a time when
everyone was available. However, many times our group used this to our advantage by going to
office hours that may have been at odd hours for other members.

Over the course of this project, I took on multiple roles whenever necessary and was not limited
to my role designated at the start. I definitely pushed myself to be more confident in my skills
during this project. I was initially intimidated by all of the moving parts, but soon I found myself
and my teammates making progress simply by lots of trial and error and asking for help. Despite
many of the setbacks, we soon found ourselves getting the hang of the different files and
improving our debugging skills by understanding the flow of logic. My advice for future groups
would be to set realistic goals, ask for help early on, communicate with your group every step of

23

the way, and to not underestimate your own skills. Although this project has been incredibly
challenging, it has been incredibly rewarding as well and I am grateful I was able to take this
course.

8.2 Saumya

I learned how important it is to communicate and plan ahead in a group project. Since we were
all in different time zones, it became difficult to find a meeting time that worked for all of us. We
would have made all the deadlines if we would have communicated better.

I also realized how important it is to develop iteratively. Professor Edwards told us to do this
from the beginning and I think this is something our group tried to follow as much as possible.
Learning OCaml seemed impossible at first but we were fortunately able to get through the
initial impediments. We realized how important it is to scale back and to focus on the most
important features first. This project was truly a unique opportunity and although it was a lot of
work, it was really rewarding!

8.3 Shirley

Two things that I learned from this experience is understanding the exact meaning of the code
design and time management. There were several cases where we did not pay close enough
attention to the code blocks of microc porgram and understand the role they played interacting
with other parts of the language. And that resulted in a chain action of not properly coding the
corresponding parts in Racontr. Though we planned to develop and test iteratively, it cost us way
longer than expected to fully implement certain functions.

And beyond that, it probably would be a much pleasant experience if we could have taken into
consideration the possibility of our program needing more time to develop and test. If we had
started earlier on the actual programming, it would have given us more time later to adjust our
language if we found aspects that were less preferable through the test cases.

8.4 Xinye

The first thing I think that I’ve learnt is how important for all the team members to come up with
a good idea together. The project’s idea must interest all of us so we can share the motivation to
work together; it also needs to be innovative and unique so our projects would have some real
value even outside the class. We are pleased to think up an idea that we all agree on and put our
time into advancing it.

24

Another important thing that I’ve learnt is how crucial making plans is for a group project. As we
have iterated, all the team members live in different time zones and cooperation has not been as
smooth as we had initially hoped to be, so we were required to make plans for the project’s
progress so we could reach the checkpoints in time. Every step asks for cooperation and our
cooperation requires planning ahead. This made me realize how important making plans are for a
group project and at the same time, we all try hard to keep up with our plan and catch up when
we cannot. Plans for the meetings… plans for the TA hours… and plans for the programming
progress… Sometimes it can get tedious and demanding, but I think making plan greatly helps
all of us to complete our project while working alone and working together.

8.5 Morgan

Over the course of the project, I learned not to be too ambitious with language features. As a
group, we had many ideas about what a text-adventure language might look like but we quickly
realized the amount of work required to implement even the most subtle features. I also learned
the importance of time management, as the brainstorming and planning stages up a lot more time
than anticipated in the development of the project because there were a lot of factors to consider.
This saying has a lot of truth to it: sometimes less is more.

This project also pushed us to learn the details of functional programming and Ocaml, which I
found both interesting and challenging. It is very different than the programming languages I
have learned in previous courses, which made it especially rewarding when I started to
understand. I ended up tapping into each of the roles, working on the system architecture and
writing code for the files, writing a test case, and helping with the development of the language,
so I learned how all of the moving parts work together. On a more personal level, doing the
project under these virtual circumstances definitely posed new challenges, but I learned to have
more confidence in my ability, adapt to frustrating situations, seek help when needed, and to be
resilient. This project was truly a unique opportunity to explore functional programming by
diving in and doing, which I appreciated and will apply to future thinking. For future students
who take this course, my advice would be to start early, scale back, and channel your creativity!

9. Acknowledgements

There are many people who helped us in the creation of Racontr. First, we would like to thank
Professor Edwards who was our project adviser. His office hours were incredibly helpful in
making our goals more realistic and debugging our code when we were stuck.

Languages that inspired Racontr include microc, GRIMM, Gawk, Coral, and Zil. We based many
of our files, features, and goals off parts of these languages and customized them for Racontr.

25

We would also like to thank the AHOD project group, whose codegen we learned a lot from and
then used to create ours. Specifically, we would like to give a shout out to Tiffeny from the
AHOD group, who Professor Edwards introduced us to at office hours.

Special Shoutout to TA Xijiao who gave us hope--

10. Appendix

10.1 Racontr.ml

26

10.2 scanner.mll

27

28

10.3 ast.ml

29

30

10.4 parser.mly

31

32

10.5 sast.ml

33

10.6 semant.ml

34

10.7 codegen.ml

35

36

37

38

10.8 Makefile

39

10.9 testall.sh

40

41

42

43

10.10 Tests

fail-classdecls.rac

fail-classdecls.err

fail-fib.rac

fail-fib.err

fail-helloworld.rac

fail-helloworld.rac

test-basic.rac

44

test-basic.out

test-classdecls.rac

test-classdecls.out
*Empty file, doesn’t print anything

test-convo.rac

test-convo.out

test-printbool.rac

test-printbool.out

45

test-fib.rac

test-fib.out

test-hello.rac

46

47

test-hello.out

48

