
Boomslang
Nathan Cuevas

Robert Kim
Nikhil Kovelamudi

David Steiner



 Boomslang in a Nutshell

● Python-inspired syntax
● static type checking for safety 

and readability
● Enhanced object oriented features

○ Auto-generated constructors with 
required and optional parameters

○ Operator overloading syntax
○ Automatic to_string methods

● Automatic coercion between 
appropriate types (e.g. int and float) A Boomslang is a large, venomous snake found in Africa

Boom = tree
Slang = snake



Motivation for Boomslang

● We wanted a language that was fun and breezy to write in
● Safe, readable, and opinionated
● We wanted to reduce boilerplate so that object-oriented programming 

wasn’t such a chore
● We wanted a solid set of fully-baked features

○ Arrays
○ Nulls
○ Primitive data types
○ Classes and generics
○ ...Many more



Boomslang in Depth
● Types

○ Primitives are int, long, float, char, string, bool, void

○ Class

○ Array (can be array of arrays)

○ Null

● A program is a sequence of one of three things

○ Statement

○ Function declaration

○ Class declaration



Boomslang in More Depth
● Strongly and statically typed - no type inferencing or 

duck typing

● Mutual recursion is allowed. Objects can reference other 
objects or themselves. Functions can call other functions 
or themselves. Classes and functions do not need to be 
defined before they are used.

● Compile and runtime exceptions

● Strings are first class: This means you can write things 
like “foo” == “bar” (false), “string” + “bar” (“stringbar”)



Key Features



Syntax
● If, Elif, and Else operate similarly to Python
● Function Declaration 

○ Return type declaration required for non-void return. Formal types required
● Loops are a hybrid of for and while loops

○ Loop (do this every loop) while (boolean expression passes)
○ Statement after “loop” keyword can be omitted for pure while loop

● Variables declared inside functions/classes are local variables and outside are global variables
● No main() function

if/else branches

function declaration

loops globals



Arrays
● arrays supported for each available type 
● Arrays can be initialized with default values, using the default construct
● Boomslang supports multidimensional arrays and array reassignment
● len() can dynamically get runtime size of the arrays

array reassignment multidimensional arrays and len()

default construct



Functions (1)
● Useful Built-In Functions 

○ polymorphic println() function 
○ type conversion functions such as int_to_float() and float_to_string()
○ concat_strings() function that can be implicitly called with ‘+’

polymorphic printing string concat using ‘+’



Functions (2)
● Function overloading
● all functions/methods support 

standard and mutual recursion 

function overloading

mutual recursion



Classes (1)
● Class Constructors are both familiar and unfamiliar
● Static variables are modeled in LLVM as global variables (MyObject.x is a 

global variable named “@MyObject.x”)
● Required and optional variables are instance variables. What is the 

difference between them?

2 constructors are automatically generated:

def construct(int z, float fOOOO):
self.z = z
self.fOOOO = fOOOO
self.boo = true

def construct(int z, float fOOOO, boolean boo):
self.z = z
self.fOOOO = fOOOO
self.boo = boo



Classes (2)
● Classes also come with a built-in automatic to_string method

>println(mo)

MyObject:
x:5
foo:bar
z:10
fOOOO:1.0000
boo:true

LIVE DEMO



Classes (3)
● Classes allow for chaining any valid expressions, be they variables or 

functions
● So foo.var.func().var.var.func().func() could be a valid expression
● In addition to calling foo.mymethod(), we have a special syntax for object 

operators

>mylist ++ 2

LIVE DEMO



Classes (4)
● Boomslang also supports generic classes
● These classes cannot be used directly, be can be instantiated to 

succinctly make new classes using the generic template

LIVE DEMO



Exceptions
● Compile time checks for 

○ type compatibility
○ class/function declarations
○ variable initialization

● Runtime checks for division by zero and null objects



Test-driven development
● Unit tests for lexer and parser utilizing the run_tests.py script (1018 lines of 

code)
● boomc shell script to test each file individually
● Over 250+ tests in the final repository
● REPL to troubleshoot issues
● Our AST and SAST are both able to be pretty printed as graphviz .dot files. 

. /boomslang.native -a and . /boomslang.native -s , respectively



Examples

unit tests for lexer and parser

use repl for troubleshooting

final tests



Future Work
● Show the user the line number where error occurred
● Automatic garbage collection
● Support for static functions
● Ability to import from other modules
● Working REPL for codegen (current REPL only goes up to 

semant)
● List comprehensions
● Inheritance
● Improvements to coercions
● Remove NULL (less is more, and Maybe is better than NULL)



Thank You!

Questions?


