
The PolyWiz
Programming Language

Tamjeed Azad, Rose Chrin, Max Helman, Aditya Kankariya, Anthony Pitts

You’re a wizard, Stephen!

The PolyWiz Team

Anthony Pitts
Tester
Early Bird

Max Helman
Systems Architect
Night Owl

Tamjeed Azad
Systems Architect
Grammar Stickler

Aditya Kankariya
Language Guru
Professional Artist

Rose Chrin
Group Leader
World’s Best Boss

The PolyWiz Programming Language

The PolyWiz Programming Language

● A language for symbolic mathematics,
focused on a Polynomial datatype for easy
symbolic manipulation

● Polynomial datatype supports easy plotting
and LaTeX integration

● Strongly and Statically Typed, Statically
Scoped, Imperative Language

● File ending: .wiz

Poly, The Heart of PolyWiz

● Robust support for polynomial operations
○ Addition (+), Subtraction (-), Multiplication (*), Division (/)

○ Polynomial Composition & Evaluation

○ Constants Retriever (poly1 #) & much more...

● Simplified syntax to work with polynomials
○ Instead of evaluating a polynomial via loops, powers, several local variables, etc...

■ poly1 @ 8

○ Instead of composing two polynomials via convoluted powers, summation, etc…

■ poly1 : poly2

Poly Data Type Implementation

● poly is represented as a float array
○ The ith element represents the constant multiplied by xi

○ length of poly array = order of the polynomial

○ example: 3x2 + 5x - 4.2 is represented as [-4.2, 5, 3]

● Pros & Cons of this implementation
○ Efficient. All coefficient lookup is O(1) because indexing specification.

■ This speed allowed for optimal implementations of all poly operations

○ In rare cases, this can waste space

■ 3x25 is represented with twenty five 0’s, followed by a 3.

■ Then again, any array with an order > 10 without other terms is quite impractical.

Plotting Implementation

● Two functions: plot and range_plot.
○ Plot takes in array of polys, filepath to desired output location, and plots at default

x-value range of -5.0, 5.0.
○ Range_plot has same inputs and output style, but also requires definition of an

x-value range.
● Uses gnuplot command line program to implement plotting. System calls

using linked C function library.
● Evaluates polynomial(s) at many points to generate a temporary text file, then

generates a temporary companion plotting script based on how many
polynomial functions are present, then feeds this plotting script to gnuplot to
make a png plot. Both temporary files removed after execution.

Plot Examples

LaTeX Implementation :D

● It’s in LaTeX so it must be true.
● The print_tex function takes in a Poly and outputs it in format suitable for

LaTeX math mode, including wrapping exponents in curly brackets and
wrapping the entire expression in dollar signs.

● The tex_document function takes in a list of strings and a list of indices for
filepaths. It wraps the entire list in a LaTeX document, placing each element
on a new line and wrapping the filepaths in LaTeX code to display images.

● This was mostly implemented with string manipulation in C… pain

A Sample PolyWiz Program

● Let’s use PolyWiz to verify the Mean Value Theorem and output this
verification in LaTeX!

● Program can be viewed on GitHub: tests/test-complex_program.wiz

A Closer Look at the Output...

LaTeX Compiler

PolyWiz
Output

LaTeX
Output

Future Additions

“Hey Prof, I just have to finish my
compiler and then I can get to grading.”
“Finish your compiler? That’s a bit open
ended, no?”

Future Additions

● While doing a project on Algebraic Coding
Theory for another class, I (Max) realized
that PolyWiz would be perfect for
implementing coding schemes if it had a
numeric type for elements in a Finite Field.

● We could also give the option to specify that
the coefficients in a polynomial must come
from this numeric type.

● Essentially, we could add some more
sophisticated math behind the polynomials;
this would also make our language suitable
for cryptographic applications.

Future Additions

● It would be awesome to add support for
Multivariate polynomials; gnuplot has a built-in
3D graphing library that we would take
advantage of. However, we would need to
change some underlying implementations of the
polynomial data type.

● We could also add functionality to allow for plot
outputs in formats beyond .PNG files. Gnuplot
natively supports an incredibly large number of
formats beyond this, which could be exploited.

● We would like to build native support for working
with data. PolyWiz would be great for things like
regression coefficient estimation. This would
likely require matrices as well...

Takeaways

“Write software communally. That way, nobody
is at fault.”

“Implement each part separately. It will work
when you put it together.”

“Ignore other members’ opinions: you’re
always right; they’re always wrong.”

On the first day of class, a wise man gave us some advice...

We tried this. It did not work well. We will likely
never do this again in the future on any project.

Pair programming was actually very helpful.
However, it helped to have a “point person” for
each bug (feature).

Some of our best features and design choices
came from having a second set of eyes on
things. As a corollary, some absolutely terrible
features and design choices were avoided this
way.

Takeaways
Some other takeaways that we were not warned about
on the first day:

-Learn from the greats. Some past projects
implemented things in really awesome ways; studying
these saved us a lot of time when we wrote our own
implementations. And of course, give credit where
credit is due!

-Detailed and direct feedback, even if negative, is
much more useful than brief and unspecific praise,
which leaves you without a clear direction.

PolyWiz

Acknowledgements

-Some previous languages that inspired us: Coral (2018), Shoo (2018), SickBeets
(2017), Mathematica, C, MicroC

-Al Aho for winning the Turing Award :)

