
Photon

An image processing language.

Akira Higaki
Calum McCartan
Franky Campuzano 
Phu Pham



Motivation ● Image editing and processing software is 
pretty cool.

● Even as technology becomes more 
advanced, tedious grunt-work is still 
required, e.g. rotoscoping, greenscreen.

● Automate some of these processes, and 
provide foundational image processing 
and manipulation functions with Photon.



Overview of 
Language

Syntax: C-like syntax

Variable Hoisting: JavaScript like.

Keywords: func, return, if, else, for while

Primitives: int, float, string, bool, pint

Structures: array, Pixel, Image

Colour Alias: _red, _blue, _yellow, _green

Operators: add, subtract pints, Pixels, Images

Built-in: min, max, sqrt, load, save, to_gray, flip, invert, paste



Some of 
Photon’s 
extended 
features

Min, max, sqrt: operations on numeric types, 

useful for image calculations such as 

distance, colour aliases arithmetic, etc.

Line comment: hash character

 #This is a comment.

String: string type and printing strings



Automatic
Type 
Casting

● Numeric types are automatically casted to the target type

● This is required for:

○ Binary operations
○ Assignments
○ Function arguments & return statements

● Supported conversions include:
○ Pint -> Int
○ Pint -> Float
○ Int -> Pint
○ Int -> Float

● Supported conversions are enforced by the semantic checker

● Actual conversions done using llvm produced by codegen



Primitive 
Data Types 
and Arrays

Primitives: int, float, string, bool, pint

Arrays: Non-essential component, provide further functionality to Photon 
users. 

Initialized with primitive types, have dynamic size. Arrays can be 
appended, possess length attribute, and have element retrieval. 



Photon’s types
(pint, pixel, image)



Pint 
(Pixel-int)

● An unsigned 8-bit integer (0-255)

● Integer overflow is automatically avoided 

● This is done by:

○ Casting both pints to integers

○ Performing the operation

○ Clamping using a pair of select statements

○ Casting the result back to a pint

● Comes with a performance overhead, but very 

useful for common pixel operations

● 4 pints fit perfectly in the space of a single 32-bit 

integer...



Pixel ● A 32-bit struct containing 4 pint values to 

represent RGBA

● Can be constructed using the pixel() function

● Attributes can be easily accessed

● Pass by value

● Very convenient for using with image functions



Color 
Aliases ● Short way of calling pixel()

● Substitution performed by the semantic checker

● Convenient with our image functions



Image ● Images in Photon are implemented using the 

stb_image C library. 

● They are structs containing width, height, size, 

channels, and data values. Passed by reference.

● At its core, Image in photon are one-dimensional 

arrays, where every four elements represent 

RGBA.

● Can be used with the +/- operator to call 

image_add() and image_subtract().



get_pixel() and set_pixel()

● Returns a pixel containing the red, 
green, blue, and alpha values at the 
specified x (width), y (height) 
coordinates.

● Similarly, setting a pixel requires you 
pass in the desired pixel along with the 
coordinates.



A brief overview of some 
built-in image functions



load(), save(), and destroy()

For best results, Photon 
strongly recommends 
the use of .png images 
that have a bit depth of 
8 or 32.

Images must be saved 
into the same directory 
as the executable.

Images are passed by 
reference, and should be 
manually destroyed. 

Frees the memory 
allocated to the image in 
the heap.



image_invert()

Pass in an image, 
and image_invert() 
return an inverted 

copy.



to_gray()

Pass in an image, 
and to_gray() return 

a grayscale-ed 
version.



image_paste()

target source output 

Pass in two images, a target and source, along with x, y coordinates.



All Built-in 
Image and 
Pixel 
Functions

1/2



All Built-in 
Image and 
Pixel 
Functions

2/2



Future Work:

What Photon 
Could Be

● Increasing the number of compatible 
image types, even video types

● More built in functions (rotate, move, 
scale, mask, rotoscoping)

● More merge functions

● Runtime error handling

● Fully implemented arrays and matrices 
for image representation



Demo Time!



Thanks!


