
JQER
Python, but not real python

Jiaxuan Pan
Qianjun Chen

Eurey Noguchi
Roger Lu

Motivation

● We like the Python syntax (indentation) for grouping
● We like strongly and static typed language
● Let’s combine them!

Architecture

Source code (.jqer) Scanner (scanner.mll) Parser (jqerparser.mly) Abstract Syntax Tree

(ast.ml)

semant.ml sast.ml Code generation
(codegen.ml)

LLVM Executable

Syntax

● Function definition
○ Return type of function
○ Parameter(s) of function
○ Return statement

● Initialization of variable
● Main function
● Function call
● Print function call
● If else statement
● While and for loop

int def cond(bool b):

 int x

 if (b):

 x = 19

 else:

 x = 17

 return x

int def main():

 print(cond(true))

 print(cond(false))

HOW DOES GROUPING
WORK?

● Operators:
○ + - * % / = == > < >= <= ! and or

● Control Flow:
○ if (true): print(1) [else: print(0)]
○ while (true): print(1)
○ for (i = 0; i < 5; i = i + 1): print(1)

● Primitive Types:
○ int, bool, char, str, tuple

● Comments:
○ # comments

Functionalities

Testing

● Use shell script for suite automated testing and record keeping.

● Runs .jqer files for both passed and failed and record in .out files.

● Test suite composed with microC program rewrote in JQER and specific

JQER features.

● Most bugs detected during compiler compile time (make) instead of suite

compile time.

Challenges & Reflections & Future Work

● Challenges & Reflections:
○ Data structure like array is hard as the length for each index are not the same for different

primitive types without pointer.
○ We initially were going to implement binary trees but it was hard to implement a dynamically

changing type (and therefore could not finish)
■ We added a simpler structure: tuple

○ Aim low at first to build up on the basics.

● Future Work:
○ Struct like object-oriented programming without inheritance
○ Code linking to support module importing

DEMO TIME

