
GRACL
Defne Sonmez dys2109 System Architect
Eilam Lehrman esl2160 Language Guru
Hadley Callaway hcc2134 Manager
Maya Venkatraman mv2731 System Architect
Pelin Cetin pc2807 Tester

OVERVIEW

What is GRACL?

● GRAph Concurrency Language
● Enables common graph algorithms such as Depth-First-Search (DFS) and Dijkstra
● Leverages concurrency and built-in data structures to initialize and modify graphs
● Allows unique concurrent graph algorithms that may converge more quickly than their

traditional counterparts
● Syntax with elements from Java, Python, and C
● Following features are available to the user:

○ Types: Graph, Node, Edge, Nodelist, Edgelist, DoubleTable, IntTable
○ Keywords hatch and synch for thread manipulation

Motivation

Language Features

- Statically scoped
- Strongly and statically typed
- Pass by value
- Mutable data types
- Block scoping
- Imperative language
- All objects are on the heap

Compiler Architecture

source .grc

Lexer

Semant

Parser

Codegen

LLVM Linking

C Libraries

Executable

Syntax

 double example() {

Graph g = createGraph(2);

Node n1 = g.addNode(“hello”);

Node n2 = g.addNode(“goodbye”);

Edge e = g.createEdge(n1, n2, 10.0);

return e.weight();

}

Hatch and Synch Syntax

 hatch nodelist normalDFS_start(goal, myPath, path) {

 // code that parent thread executes before ending brace

 }

synch lockedObject {

// code performed while the implicit lock on lockedObject is held

}

COMPILER

Hatch in Codegen

Constructs arguments to call user function by
unwrapping the argument struct

Get types to create struct dynamically

Calculates size of struct

Fill each struct with the arguments

Block Scoping

Alpha renaming

Pop top symbol table thanks to special expression

Track locals to allocate space at top of function

C BACKEND

Backend Object Creation

Node Type

- Notable that we tried to build a rich
data type for node to give the user
many options

- Precursor vs maintaining a nodelist
- Cost vs IntTable or DoubleTable (as

traditionally used in Dijkstra)
- Support a large number of graph

algorithms

Graph Structure

- hashArray is an array of node
keys mapped to EdgeList values

- In the values we store all edges
that point to the node in the key

- This makes removal O(1)
- Addition of nodes/edges O(1) as

well

Collision Handling

- IntTable and DoubleTable are implemented with a different form
of collision handling than the underlying Graph type

- For both, users may input a predicted size of items they think
they will input

- However, we handle the user exceeding their original bound

In IntTable/DoubleTable:

Type is user exposed, and we don’t internally id
the nodes added; we implement a true form of
hashing where buckets created at every hash
index

The user may have worse operation
performance if they exceed their expected size

In Graph object:

Type isn’t user exposed and we
internally id nodes

We use an array that we double if
original size exceeded; O(1)
access guaranteed

Lazy Delete

● Instead of freeing Node or Edge
objects when the user removes
them, we mark the deleted
boolean for lazy deletion

● For Node and Edge accessor
functions and some Graph
functions, we check if the object
has been deleted first

● Deliberate choice for defined,
clear behavior

TESTING

Testing Suite

Three testing scripts

- ./testall.sh for all the GRACL files
- 119 tests

- ./test-script.sh for all the C testing
- 11 tests but tests are lengthier and more

comprehensive
- ./time-dfs.sh to get the time difference

between concurrent DFS and normal
DFS

- valgrind in Docker image, tests run to
check for memory errors (not leaks)

./time-dfs.sh & Performance

Demos

- Dijkstra
- Non-concurrent vs. Concurrent DFS (takes ~5 min)
- Implementation and performance
- Bidirectional Search

Future Work

- Concurrent Tarjan’s algorithm
- Multiple returns
- More polymorphism
- Int/DoubleTable taking expressions, not just IDs
- Easier large graph creation
- Memory

- Freeing nodes and edges after removal rather than lazy delete

“If I held a gun against your head, would you be able to write
concurrency in C?”
- Stephen Edwards, 2021

