

YAGL Yet Another Graph Language
Project Proposal
─

Adam Carpentieri ● AC4409 ● Manager
Jack Hurley ● JTH2165 ● Tester
James Mastran ● JAM2454 ● Language Guru
Shvetank Prakash ● SP3816 ● System Architect

 1

Introduction
YAGL may be just that, Yet Another Graph Language, but it is unlike any other— hopefully.
The pervasiveness of graphs in computer science makes them a great candidate to be
added to the list of classical types that are widely used in other languages. This language
aims to make implementing graphs and their algorithms much simpler and easier! While
we are creating our own language syntax and design, we do plan on adopting some of
Java’s and C’s syntax & features that we appreciate most.

Motivation
Graphs are fundamental in data structures and algorithms. They are ubiquitous and can be
used to represent almost anything: social media connections, roads that connect cities,
flights between cities, relationships or friendships, and many other mathematical & logical
problems. Our language aims to simplify the use of graphs in computation by nicely
wrapping many of the operations used in well known algorithms into a neat & compact
syntax. Using these commonly used graph operations & operators as our building blocks,
we hope to build a “Standard Library” that can easily implement many of the widely used
graph algorithms.

Language Design and Syntax

Basic Features and Paradigms
● Statically typed
● Strongly typed
● Manual memory management (i.e. no garbage collection, must use “free()” and “malloc()”)
● Strict evaluation
● Mutability

Primitive Data Types
int, char, bool, float

Derived Data Types
Node, Edge, Graph, Array, String

 2

Further Explanation: Primitive Data Types and their Supported Operators
1. int: An int in our language is the same as pretty much any other language in which it

can hold the value of an integer that is 4 bytes long.

Assume we have an int a:

2. char: A char in our language is the same as a char in the C language (i.e. a 1 byte
integer)

Assume we have a char c1 and char c2:

3. bool: A bool in our language can be one of the boolean values (i.e. true or false).
Classical logical operators similar to C can operate on booleans.

Assume we have a bool a and bool b:

Instantiation int a = 6;

int b = 5;

Integer Arithmetic Operations

Since our language is strongly typed,
these operations require two ints and a
float can not be re-interpreted as an int.

a + b; /* evaluates to 11 */

a - b; /* evaluates to -1 */

a / b; /* evaluates to 1 */

a * b; /* evaluates to 30 */

Instantiation char c1 = ‘a’;

char c2 = ‘b’;

Character Operations (same as
integer arithmetic operations)

Since our language is strongly typed,
these operations require two chars and
a float or int can not be re-interpreted
as a char.

c2 + c1; /* evaluates to 195

*/

c2 - c1; /* evaluates to 1 */

c2 / c1; /* evaluates to 1 */

c2 * c1; /* overflow for 1 byte*/

Instantiation bool a = false;

bool b = true;

Boolean Operations

We will support AND, OR, and NOT.

a || b; /* evaluates to true

*/

a && b; /* evaluates to

false*/

!a ; /* evaluates to true

*/

 3

4. float: A float in our language is the same as pretty much any other language in
which it can hold the value of a number containing a fractional portion (i.e. a
decimal or “floating” point number).

Assume we have a float a and float b:

Further Explanation: Derived Data Types with their Primitive Operators
5. Node: A Node in our language is a collection of one or more attributes of any type.

It is similar to a dictionary in other languages like Python. Nodes are essentially a
reference to the first attribute in the dictionary.

Assume we have a Node A:

6. Edge: An edge in our language connects two Nodes. All edges are directed and
contain a source and destination Node. In addition, edges can hold an attribute of
any type. Thus, our Edge type can be defined as a container holding a reference to a
source Node, a reference to a destination node, and an attribute of any type. We will
provide pseudo undirected edges by simply creating two directed edges with one in
each direction.

Instantiation float a = 10.0;

float b = 4.0;

Float Arithmetic Operations

Since our language is strongly typed,
these operations require two floats and
an int or char can not be re-interpreted
as a float.

a + b; /* evaluates to 14.0

*/

a - b; /* evaluates to 6.0 */

a / b; /* evaluates to 2.5 */

a * b; /* evaluates to 40.0

*/

Instantiation Node A(String attr1: “Name”,

int attr2: 22, bool attr3:

True, type attr4: ...);

Accessing and modifying attributes A.attr1; /* returns “Name” string */
A.attr3; /* returns True bool */
A; /* returns all attributes */

/* Will return whatever is stored

in A’s data variable. Returns the

type of that data point. */

 4

Assume we have an Edge E, Node A, and Node B:

7. Graph: A Graph in our language is datatype that is a container holding references to
two arrays, namely a Node array and an Edge array.

Assume we have a graph G and Node A, B:

Instantiation Edges can only be instantiated within a
Graph. See Graph below for how to
create an edge.

The edge’s attr type is the same type as
the Graph’s generic type.

Access and Modify Source Node

E.src; /* returns a source Node */
E.src = Node C(String:

“Pittsburgh);

Access and Modify Destination Node E.dest; /* returns destination Node */
E.dest = Node D(String:

“Chicago”);

Access and Modify Edge’s attribute

The type of the attribute of an edge can
be any type. The type of the edge is the
same as the type defined by the graph
instantiation.

E.attr = 50.0;

E.attr; /* returns float 50.0 */

E.attr = “abc”;

E.attr; /* returns String “abc” */

Instantiation

The <type> defines what type the edges’
attribute is. Nodes can have many
attributes, but the edge of a graph must
be of a single type. If the type is not int,
then the weight value for calculations is
1.

Graph G<int>;

/* creates a graph where edges

hold ints */

Graph G<String>;

/* creates a graph where edges

hold Strings */

Add a node to the graph

Modifies graph G by adding Node A to it
if Node A is not already in graph G.
Duplicate nodes will be ignored.

* You can delete Nodes too but this will

G_new = G + A;

G_new = G + A + B;

/* This is how to add multiple

Nodes at once */

G_new = G + Array<Node>;

 5

8. Array: An array in our language is a contiguous chunk of memory storing multiple
instances of the same type similar to C. However, our arrays will be dynamic in
which the user can add and remove from the array without worrying about memory
management. For this reason all arrays will be stored on the heap. This is similar to
Java’s ArrayList<>.

be done with a library function.

Add bidirectional edge to the graph
with attribute value x

Only works on a single graph G (cannot
add edges between two different
graphs).

G.A <->(x) G.B;

Add directional edge to the graph
with attribute value x

Only works on a single graph G (cannot
add edges between two different
graphs). Cannot add two edges from A
to B, if edge A to B already exists, return
error.

G.A ->(x) G.B;

Retrieve array of all nodes in graph G

G.nodes;

/* returns an array of nodes

*/

Retrieve array of all edges in graph G

G.edges;

/* returns an array of edges

*/

Retrieve Edge between A and B in
Graph G

If the edge doesn’t exist or if you are
asking about two different graphs,
return null.

G.A ? G.B;

/* returns an edge */

Retrieve array of neighboring Nodes
to node A in graph G

?G.A;

/* returns an array of edges

*/

 6

Assume we have an int array A:

9. String: A String is simply an array of characters in our language. This is similar to C,
but String will be a built in datatype unlike in C where a header file needs to be
included (i.e. <string.h>).

Assume we have a String name:

Instantiation Array<int> A;

Add an element

Whenever you add an element and the
array is full, our compiler will reallocate
double the memory, copy over the
existing array, and free the other
memory.

* The index argument is optional, if not
provided, the element will be appended to
the end.

A.add(element, index);

Remove an element by index

Removing an element of an array
involves copying over all the elements
to a new array and deallocating the
original array.

A.del(index);

Return length of array (number of
elements)

A.length;

Instantiation String name = “Bob”;

Add to a string

Since our arrays are dynamic we can
add to an existing string.

name = name + “ Meyers”;

Modify a character from a string

/* name[index] = char */

name[0] = ‘R’;

name;/* returns “Rob Meyers”

*/

 7

Standard Library Functions to build using Graph Primitives
Below are the functions we plan on implementing using our Graph primitive operators to
build the “Standard Graph Library” of our language. These functions are commonly used in
many graph problems.

Remove a character from a string (by
index)

Since our arrays are dynamic we can
also remove from an existing string.

/* name.del(index); */

name.del(0);

name; /* returns “ob Meyers”

*/

Graph add(Graph A, Graph B)

Syntactic sugar: A + B;

Creates one graph of two strongly connected
components. Returns a new graph.

Array<Graph> explode(Graph A)

Syntactic sugar: A#;

The explosion function. Split all SCCs into
separate graphs. Returns an array of graphs.

Array<Edge> shortest_path(Node A,

Node B)

Syntactic sugar: A ->? B;

Returns the shortest path from A to B in G. If
G’s attribute type is int, this uses Dijkstra’s
algorithm. If G’s attribute is not int or
unweighted, all edges are of weight 1 and
Dijkstra is equivalent to a BFS search. Returns a
Path (i.e. an Array of Edges).

Graph reverse_edges(Graph A)

Syntactic Sugar: A^;

Reverses all the edges in Graph A. Returns a
graph.

Graph breadth_first_search(Graph

G, Node A, Node B)

Returns a Graph that depicts the BFS traversal
from A to B.

Graph depth_first_search(Graph G,

Node A, Node B)

Returns a Graph that depicts the DFS traversal
from A to B.

Array<Nodes> find_all(Graph<type>

G, Node src, <type> attribute)

Returns all neighboring nodes of the source
node (Node src) in Graph G such that the edge
from src to any other neighbor has an attribute
equal to attribute.

 8

Graph Library Algorithms
These are some of the algorithms that will potentially be used to implement our Standard
Graph Library functions above:

● Dijkstra's shortest path algorithm
● Bellman–Ford Algorithm
● Floyd Warshall Algorithm
● Johnson's algorithm for All-pairs shortest paths
● Shortest Path in Directed Acyclic Graph
● Shortest path with exactly k edges in a directed and weighted graph.

Keywords
Below are the reserved keywords in our language:

for, while, in, if, else, BFS, DFS, int, char, bool, float, Graph,

Array, String, Edge, Node, return

Conditional and Logical Operators
We plan on implementing the following conditional and logical operators in our language:

>, <, >=, <= These operators will operate on two ints,
floats, or chars only. When comparing
using these operators, the operands must
be of the same type since our language is
strongly typed.

&&, ||, ! These operators only operate on booleans
and since our language is strongly typed no
other types can be interpreted as bools.
This is different from languages in which
ints equal to 0 can be interpreted as false
and anything else is interpreted as true for
example.

==, != These operators will operate on all types in
our language. For our primitive types, these
operators compare the values. For our
derived types, they will compare if they
refer to the same underlying memory.

 9

Functions
Functions in our language will follow the same syntax as in C:

Comments
As seen in some of the code examples above, all comments in our language will follow the
C multi-line comment style:

Control Structures and Flow
We will be using many of the control structures similar to other languages (if, else,
else if with { } . We do not plan to have a switch/case as of now. In particular we plan
on modeling the control structures of the C language such as the classic for & while
loops and if-else controls. One addition we will be adding to our language is the “for
each” control structure designed to make working with graphs easier.

Moreover, much like how a for loop iterates through an array, Breadth First Search (BFS) is
used to traverse nodes in a graph. We have also added the following control structure
below to our language to make traversing graphs easier. It’s required to give a graph, a

return_type function_name (type arg1, type arg2, …, type argN){

/* function body */

}

/* This is a comment

*/

for Edge e in p {

 /* Do something on e */

}

 10

starting node and the number of neighbor levels you want to visit. Node N will be updated
at each step to the current node. Similarly, there will be a DFS control flow.

Example Code
Below we have included some example code in our language with keywords bolded to
delineate.

Example 1: Creating Graphs, Find_All, Dijkstra, and BFS Operation

BFS(Graph G; Node N; int x) {

 /* execute statements */
}

Graph G< String>, cities< int>;

Node Pittsburgh(int pop: 500), Philly(int pop: 100),
 New_York(int pop: 8500), Boston(int pop:1000);
Node A(int age: 50, Node home: Pittsburgh, String name: “Jess”),
 B(int age: 19, Node home: New_York, String name: “John”),
 C(int age: 21, Node home: New_York, String name: “Jake”);

G = G + A + B + C; /* Add Nodes A, B, C as isolated nodes to G */

cities = cities + Pittsburgh + Philly + New_York + Boston;

/* Make graph’s edges. Since cities is type int, use int as attr */

cities.Pittsburgh <->(100) cities.Philly;

cities.Pittsburgh <->(120) cities.New_York;

cities.Philly <->(25) cities.New_York;

cities.New_York <->(110) cities.Boston;

/* Make G’s edges. Since G is type String, use Strings as attr */

G.B <->(“friends”) G.C;

G.B <->(“Never Met”) G.A;

/* Get all of B’s friends using find_all() */
Array<Node> friends = find_all(G, B, “friends”);

/* Since Jake is John’s friend and they both are in New_York the

/* following should print: “Jake lives in New_York which is 0

cost.”

for Node x in friends {

 11

Example 2: Implementing One of our Standard Library Graph Functions: find_all

 /* Use Dijkstra to get path cost between the friends */

 int cost = (cities.(B.home) ->? cities.(x.home)).cost;
 print(x + “ lives in “ + x.home + “ which is “ + cost + “

cost.”);

}

/* BFS : returns a graph that depicts the BFS traversal*/
Graph G_path = breadth_first_search(cities, Pittsburgh, Boston);
Array<Edges> p = G_path.Pittsburgh ->? Boston;

int cost = 0;
/* The following should print: (Pittsburgh, New_York, 120)

 (New_York, Boston, 110)

 (Boston, null, 0) */

for Edge e in p {
 cost += e.attr;

 print(e);

}

print(cost); /* should print 230 */

Array<Nodes> find_all (Graph< String> G, Node src, String
filter_attr) {

 Array<Nodes> neighbors = ?G.src; /* ? operator returns
neighbors*/

 int pos = 0;
 for Node n in neighbors {
 Edge<String> e = G.src ? G.n; /* get edge between src and n
*/

 if (e.attr != filter_attr) {
 /* Do not increment pos because del will move all elements

 down in the array */

 neighbors.del(pos);

 } else {
 pos++;

 }

 }

 return neighbors;
}

