

XIRTAM Language Proposal

Annie Wang (​aw3168) - manager
Andrew Peter Yevsey Gorovoy (​apg2165) - manager/architect (environment selection)

Shida Jing (​sj2670) - tester
Bailey Nozomu Hwa (​bnh2128) - language

Lior Attias (lra2135) - architect (compiler design)

1. Overview
The XIRTAM language is a statically typed and compiled language focused on the manipulation of matrix (XIRTAM)
objects. The purpose of XIRTAM is to provide functionality akin to Python’s numpy matrix manipulation module in
addition to flexible matrix operations not possible in traditional languages. The overall syntax is quite similar to C.
XIRTAM is statically typed and forces the user to write the types out in declarations and then the compiler will validate
those types. XIRTAM models inherent matrix data as instance variables existent on the matrix object itself. This
object-oriented approach to matrix representation allows users of XIRTAM to quickly get useful mathematical
information about their matrix that would otherwise require computation. This information allows XIRTAM further
optimize performance by choosing the most computationally efficient matrix operation algorithms based on matrix size.
Our language aims to create a language which is as functionally convenient as numpy, syntactically more streamlined,
and allows for more flexible matrix design. XIRTAM is ideal for:

● Neural Networks: Unlike traditional arrays, XIRTAM objects are mutable. This makes it easy to increase and
decrease the size of matrixes for operations such as building mutable neural networks, which can be cumbersome
in traditional languages like C++

● Pure Mathematical Manipulations: XIRTAM’s powerful built-in methods makes realizing and experimenting with
matrix related theorems and algorithms easy.

2. Language Details

2.1 Data Types and Operations

1

Data Type Description: Operations (unary and
binary):

Examples:

numeric Catch-all data type for
numbers. So there is no
issue with float matrices vs
int. By default a float.

=, ==, !=, +, -, *, /, %, ++,
–, >>, <<, +=, -=, <, >, =<,
>=

num a = 1;
num a = 1.0;

char A character type, 1 byte =, ==, !=, +, ++, –, <, >, =<,
>=

char a = “h”;

string An immutable array of
chars

=, ==, !=, <, >,
=<, >= (lexicographical), +
(concatenate)

String s1 = “hello”;

2.2 Keywords
The following words are reserved in the XIRTAM language. The reserved words parallel reserved words found in C.

if, else –​ Used for decision control programming structure.

break –​ Used with any loop OR switch case.

int, float, char, numeric, matrix –​ These are the data types and used during variable declaration.

for, while​ – types of loop structures in C.

void –​ One of the return type

return –​ This keyword is used for returning a value.

continue – ​It is generally used with for, while and do while loops, when the compiler encounters this statement it
performs the next iteration of the loop, skipping rest of the statements of the current iteration.

enum – ​Set of constants.

sizeof – ​It is used to know the size.

struct, typedef ​ – Both of these keywords used in structures (Grouping of data types in a single record).

2

bool A boolean literal, with
value either true or false

=, ==, !=, !, &&, || x = true
! x // Returns false

int Integral type - 4 bytes =, ==, !=, +, -, *, /, %, ++,
–, >>, <<, +=, -=, <, >, =<,
>=

a1 < a2;
a1 = a1 + 7;

float Float type - 8 bytes =, ==, !=, +, -, *, /, %, ++,
–, +=, - =, <, >, =<, >=

f1 == f2;
float myFloat = 36.6;

matrix Matrices are represented as
XIRTAM objects, the
following operations are all
inherent in XIRTAM
objects or built in as static
functions

See section 3 See section 3

2.3 Control Flow
The following keywords are reserved for control flow: ​if.​..​else​, ​for​, ​while
The control flow will follow C-style if..else blocks, for loops, and while loops
for (​num​ i = 0; i< 5; i++){

if ((i % 2) ==0){

print(“even”);

}

}

2.4 Functions
XIRTAM supports function declarations in a standard C style with
return_type function_name(parameter list) {

body of the function

}

For example, to write a function that adds two integers in XIRTAM it looks like this:
num​ foo (​num​ a, ​num ​b){

return​ (a+b);
}

Functions can be declared before the actual body of the function is defined. Functions can be called after a function
declaration and before the body of the function is defined.

num​ foo (​num​ a, ​num​ b);

num​ main (){
num​ a = ​100 ​;
num​ b = ​10.5 ​;
num​ result;

result = foo(a,b);

return​ result;

}

num​ foo (​num​ a, ​num​ b){
return​ (a+b);

}

3

2.5 Comments
Comments also follow C’s syntax where a single-line comment is denoted with (//) and a multi-line comments are denoted
with /* */ as shown below:
 ​// This is a single line comment

/* This

is

A

multiline

comment */

2.6 Memory
For XIRTAM specific data objects and functions, memory is handled on the backend and no memory management is
needed by the user . If the user wants to use XIRTAM in conjunction with C or C linked libraries, normal C rules should
be followed (i.e., when needed, the user should Malloc and realloc memory as they would do naturally in C). For
XIRTAM objects and functions, there will not be an automated garbage collector.

4

3. XIRTAM Specifics and Example Code

3.0 XIRTAM basics
XIRTAM is strongly and statically typed. The purpose of XIRTAM is to allow for flexible matrix operations that are not
possible in traditional languages. For these reasons, XIRTAM forces the user to write the types out in declarations (and
then the compiler will validate those types on compile-time) and does not automatically convert between types or provide
generic object types. Please note that while XIRTAM provides a matrix data type with rich built-in functionality, the
purpose of XIRTAM is not to be a general object oriented language.

3.1 XIRTAM instance data
XIRTAM models inherent matrix data as instance variables existent on the matrix object itself. This approach to matrix
representation allows users of XIRTAM to quickly get useful mathematical information about their matrix that would
otherwise require computation.

These data types can be accessed via the XIRTAM object directly. To illustrate these we will provide some examples
assuming the following sample matrix:

5

Xirtam matrix ​ ​// assume this matrix has already been populated
int​ rows = matrix.rows; ​ ​//returns 3
int​ cols = matrix.cols; ​ ​//returns 3
int​ [] dimensions = matrix.dimensions; ​ ​//returns [3, 3]
int​ [] l_diagonal = matrix.left_diagonal; ​ ​//returns [1,5,9]
int​ [] r_diagonal = matrix.right_diagonal; ​ ​//returns [3,5,7]
int​ [] col_1 = matrix.cols(​1 ​); ​ ​//returns [1, 4, 7]
int​ [][] cols_1_2 = matrix.cols(​1 ​: ​2 ​)); ​ ​//returns columns 1 through 2
inclusive

int​ [] rows_1 = matrix.rows(​1 ​); ​ ​//returns [1 2 3]
int​ [][] rows_2: ​3 ​ = matrix.rows(​2 ​: ​3 ​); ​ ​// returns a 2D array rows 2
through 3 inclusive

int​ [][] sub_matrix = matrix.dims(​1 ​: ​2 ​, ​2 ​: ​3 ​); ​ ​// returns a 2D array
representing {{2, 3}, {5, 6}} (the intersection of rows 1 - 2 and

cols 2 - 3)

int​ max = matrix.max_val;
int​ min = matrix.min_val;

3.2 XIRTAM transformations and discussion of shape flexibility
The XIRTAM language also provides for standard library operations that are not tied to a single data type. One example is
the creation of XIRTAM objects through several different avenues. The example below shows the ability to create a
XIRTAM object directly from another matrix (in which the XIRTAM object is a subset of the larger matrix).
Alternatively, a XIRTAM object can also be instantiated from an N-D array of any size (1-D, 2-D, 3-D, etc.).

Below, the asXIRTAM built in is meant to act similar to a ‘toString(var int)’ method. The asXIRTAM function converts
its parameters to a Xirtam object.

Unlike traditional arrays, XIRTAM objects are mutable. This makes it easy to increase and decrease the size of matrixes
for operations such as building mutable neural networks, which can be cumbersome in traditional languages like C++.

For flexible design of neural networks, XIRTAM allows users to build non-square matrices using the
without_error_detection ​ functionality.

6

Xirtam small_matrix = asXIRTAM(matrix.cols(​1 ​: ​2 ​));
Xirtam sub_matrix = asXIRTAM(matrix.dims(​1 ​: ​2 ​, ​2 ​: ​3 ​)); ​//returns a new
matrix of rows 1 through 2 incl., and columns 2 through 3 incl. {{2,

3}, {5, 6}}

Xirtam s_matrix = asXIRTAM(cols_1_2);

Xirtam matrix; ​ ​// assume populated with the original values as above
matrix.append_row_values(​0 ​); ​ ​// populates a row at the bottom of the
matrix containing all zeros

matrix.prepend_row_values(​1 ​); ​ ​// populates a row at the bottom of the
matrix containing all ones

matrix.append_col_values(​1 ​); ​ ​// populates a column to the left of the
matrix of all 1s

matrix.prepend_col_values(​0 ​); ​ ​// populates a column to the right of
the matrix of all 1's

Xirtam matrix2 = {{ ​2 ​, ​2 ​, ​2 ​}, { ​2 ​, ​2 ​, ​2 ​}};
matrix.add(matrix2, ​"top" ​);
matrix.add(matrix2, ​"bottom" ​);
matrix.overalay_with_error_detection(matrix2, overide_rows ​1 ​);
matrix.overaly_without_error_detectoin(matrix2, overide_rows ​1 ​);
//allows for purposeful creation of non-square matrices

matrix_add_without_error_detection(matrix2, ​"left" ​);
amatrix_add_without_error_detection(matrix2, ​"right" ​);

XIRTAM matrices can contain any type of data. The default type of a XIRTAM matrix holds numerics. However,
XIRTAM matrices can hold any type of data (doubles, chars, strings, longs, floats, etc.) which can be specified by the user
at initialization. Once the type of the XIRTAM matrix is set, it is not possible to modify the type contained in the matrix.
Additionally, while XIRTAM objects are mutable and can be appended with other XIRTAM objects, arrays, and matrixes,
it is not possible to append sub-matrices, sub arrays, or sub XIRTAM objects of different types to the original XIRTAM
object.

A note on ​min_val​ and ​max_val​-- if the matrix holds string or char values, the highest ascii value argument is denoted as
the max value. For matrixes that hold objects, min and max values must be programmed into the object itself by the user.
For XIRTAM matrixes that hold other XIRTAM matrixes, min and max values are a global min and max.

3.3 XIRTAM object initialization
XIRTAM objects can be initialized from a char-delimited file (such as a CSV or space separated file, where each new line
(carriage return) represents a new row. XIRTAM objects can also be instantiated directly with a matrix using { { }, { } }
notation. XIRTAM objects can also be instantiated via default dimensions and values, including NULL values. Finally,
XIRTAM matrices can be instantiated via “special type” such as ​identity​ .

As discussed above, XIRTAM objects can also be instantiated via any n-dimensional array via a XIRTAM transformation.

7

Xirtam int_matrix = ​new​ matrix(); ​// a default, int containing matrix.
This matrix starts out empty

Xirtam char_matrix = ​new​ matrix(​"char" ​);
Xirtam string_matrix = ​new​ matrix(​"string" ​);
Xirtam xirtam_matrix = ​new​ matrix(​"xirtam" ​);
Xirtam array_matrix = ​new​ matrix(​"array" ​);
Xirtam list_matrix = ​new​ matrix (​"list" ​);

Xirtam matrix = ​new​ matrix_from_file (filepath, ​',' ​); ​ ​// char delimiter
Xirtam matrix = ​new ​matrix_from_file (filepath, ​"string_delimiter" ​);
Xirtam matrix = ​new​ matrix({ { ​1 ​, ​2 ​, ​3 ​}, { ​4 ​, ​5 ​, ​6 ​}, { ​7 ​, ​8 ​, ​9 ​} });
Xirtam matrix = ​new​ matrix(​2 ​, ​3 ​, NULL); ​ ​// a 2 row, 3 column matrix
containing NULL values

Xirtam matrix = ​new​ matrix(​2 ​, ​3 ​, ​0 ​); ​ ​// a 2 row, 3 column matrix
containing the int value 0

Xirtam matrix = ​new​ matrix(​"identity" ​); ​ ​//the identity matrix

int​ [] ​1 ​D = { ​1 ​, ​2 ​, ​3 ​, ​4 ​};
int​ [] [] ​2 ​D = {{ ​1 ​, ​2 ​, ​3 ​, ​4 ​}, ​1 ​};
Xirtam matrix = asXIRTAM(​1 ​D);
Xirtam matrix = asXIRTAM(​2 ​D);

3.3 XIRTAM internal transformations
The following operations allow for internal data representations of XIRTAM objects

3.4 Standard Library Functions
XIRTAM (in all caps) is used to denote functions that are static functions— in other words functions that do not belong to
a specific Xirtam object. For example, XIRTAM.multiply() is a built in method that takes in two independent Xirtam
objects and returns a third Xirtam object. Here, multiple is not resident on a specific Xirtam object. Contrast this with the
syntax for class methods, such as Xirtam m = new(); m.remove(0). Here, the remove function is resident on and acts on
the Xirtam object m.

XITAM language has several pre-built functions that return a new XIRTAM object, with the parameters unmodified.
These include:

a. Addition
b. Matrix multiplication
c. Tensor Product
d. Transpose
e. Conjugate transpose
f. Check to see if the columns/rows are orthogonal
g. Inverse of square matrix
h. Determinant of matrix
i. Reshaping Matrix
j. Reduced Row Echelon Form

8

Xirtam matrix;

matrix.remove(​0 ​); ​// replaces all 0 values in the matrix with NULL, for
example for JPEG compression

matrix.remove(​0 ​: ​10 ​); ​// replaces all values 0 - 10 in the matrix with
NULL

matrix. remove([​0 ​, ​10 ​, ​11 ​, ​12 ​]); ​// replaces specific values the
matrix with NULL

matrix.replace(​0 ​, ​10 ​); ​// replaces all 0 values with 10
matrix.replace(​0 ​: ​10 ​, ​100 ​); ​// replace all 0 through 10 (inclusive)
values in the matrix with the value 100

matrix.replace_with_gradient(value:value range end, gradient:

gradient range end);

matrix.replace_with_gradient(​0 ​: ​10 ​, ​25 ​: ​100 ​); ​// replaces all values 0 -
10 with an even gradient of values 25 to 100 in ascending order based

on the amount of values being replaced

XIRTAM writes such expressions as shown below:

9

Xirtam matrix1;

Xirtam matrix2;

Xirtam matrix_addition = XIRTAM.add(matrix1, matrix2);

Xirtam matrix_multipication = XIRTAM.multiply(matrix1, matrix2);

Xirtam matrix_tensor = XIRTAM.tensor(matrix1, matrix2);

Xirtam matrix_transpose = XIRTAM.transpose(matrix1);

Xirtam conjucate_transpose = XIRTAM.conjugate_transpose(matrix1);

bool orthogonal_rows = XIRTAM.is_matrix_orthogonal(matrix1, ​"rows" ​);
bool orthogonal_cols = XIRTAM.is_matrix_orthogonal(matrix1, ​"cols" ​);
XIRTAM.determinant(matrix1);

Xirtam translated_matrix = XIRTAM.translate(matrix1);

Xirtam rotated_matrix_90 = XIRTAM.rotate(matrix1, ​90 ​); ​// rotate by 90
degrees. The only possible arguments are 90 or 180)

Xirtam reflected_matrix = XIRTAM.reflect(matrix1, ​"x-axis" ​); ​//
reflects on the x or y axis

Xirtam reshaped_matrix = XIRTAM.reshape(matrix1);

Xirtam inverse_sq = XIRTAM.inverse_of_square(matrix1);

Xirtam rreo_form = XIRTAM.reduced_row_echelon_form(matrix1);

3.5 Example XIRTAM Programs

3.5.1 Fibonacci Sequence
Generating the nth number of a general Fibonacci Sequence. Parameters: a_1, a_0 are the starting values of the sequence.

num ​nthFibo(​num​ num n, ​num ​num a_1, ​num ​num a_0){
Xirtam m = ​new​ matrix({ {1, 1}, {1, 0} });
Xirtam exp_m = ​new​ matrix(​"identity" ​);
for (​num​ i = 0; i< n; i++){

exp_m = XIRTAM.multiply(new_m, m);

}

Xirtam init = ​new​ matrix({ {a_1}, {a_0} });
Xirtam result = XIRTAM.multiply(exp_m, init);

return result[1];

}

3.5.2 Entangled Qubits
The function postMeasurementState takes in a pair of entangled qubits expressed in terms of a vector in C^4 and a
measurement result expressed in terms of a basis. It returns the post-measurement state of the qubit pair if the first qubit is
measured and the result is the result vector provided.

Xirtam ​postMeasurementState(Xirtam entangled_state, Xirtam result){

Xirtam identity_matrix = ​new​ matrix(​"identity" ​);
Xirtam projectioin_matrix = XIRTAM.multiply(result,

XIRTAM.conjugate_transpose(result));

Xirtam post_meas_state =

XIRTAM.multiply(XIRTAM.tensor(projection_matrix, identity_matrix),

entangled_state);

return post_meas_state;

}

10

3.5.3 Total Positivity
Check for total positivity. A minor of a matrix A is a square matrix which is formed by selecting a subset of the rows of
A, then selecting a subset of the columns of A, then taking the entries from the intersection. A matrix is totally positive if
all of its minors have positive determinant. If we have a 2 by n matrix A and we want to check for total positivity, there
are (n choose 2) many non-trivial minors to check. However, a theorem states that we only need to check 2n-3 many
minors to conclude total positivity.

bool ​2bynTotalPositivity(Xirtam m){

bool ​isTotallyPositive = True;

for (​int​ i = 0; i < 2 * m.cols - 3; i++){
list_of_cols = [m.cols(0), m.cols(i)];

Xirtam minor = asXIRTAM(list_of_cols);

isTotallyPositive = isTotallyPositive &&

(XIRTAM.determinant(minor) > 0);

}

return isTotallyPositive;

}

Total positivity is important in ​algebraic combinatorics​ but historically it stems from real analysis, because totally
positive matrices have real distinct positive eigenvalues, and therefore they are diagonalizable.

11

