
Viper

An amalgama�on of all our favourite language quirks.

By:

Mustafa Eyceoz (me2680)
Tommy Gomez (tjk2132)
Trey Gilliland (jlg2266)
Ma�hew O�omano (mro2120)
Raghav Mecheri (rm3614)

Overview

Viper is a sta�cally typed impera�ve programming language with similar syntax to Python
and the safety mechanisms (an increased efficiency) of type checking. Viper forces the user
to declare types of func�ons and variables, as one would do for C, yet in an easy to read
and write syntax that mimics the simplicity of Python.

Our goals for Viper are:

Python-styled syntax
Types and Type Checking
Choice of how to incorporate scope (whitespace or brackets) – get rid of Python’s
tab/spaces issues
Arrow Func�ons/Lambdas

Note: The global scope for a Viper program is assumed to comprise the main func�on,
unless one already exists.

What sort of programs would Viper be useful for?

Viper is perfect for almost all common scrip�ng tasks generally associated with languages
like Python or Javascript. It is s�ll read top-down with the top-level ac�ng as the default

“main” func�on, but there are huge efficiency gains from Viper being sta�cally-typed and
compiled rather than interpreted. Addi�onally, we combine favorite features of both
languages, as well as flexible syntax op�ons and many forms of efficient syntac�c sugar to
ensure that not only will the code run quickly, but wri�ng it will also be feel fast and natural.
We are aiming to op�mize both the speed and experience from thought to output.

Basic Language Details

Data Types and Opera�ons

The standard data types in Viper are integers, floats, booleans, and characters.
Strings are simply arrays of characters.
Viper also includes a null data type, which is defined with the keyword ‘’‘nah’’’.
The primi�ve data structure which all other data structures will be built off is the array.

Data Type Descrip�on Opera�ons Examples

char A 1 byte character
=, ==, !=, +, ++,
–, <, >, =<, >=

a + b
a >= b
a <= b

int A 8 byte number
=, ==, !=, +, -, *,
/, %, ++, –, +=, -=, <, >,
=<, >=

a = 1
a > b
a == b

float An 8 byte decimal number
=, ==, !=, +, -, *,
/, %, ++, –, +=, -=, <, >,
=<, >=

a = 1
a > b
a == b

bool A 1 byte boolean value =, ==, !=, !, &&

a == b
a != b
!(a == b)
(a && b)

Data Type Descrip�on Opera�ons Examples

nah A 1 byte none type =, ==, !=
a == b
a != b

The standard library will consist of data structures such as stacks, queues, hash maps, etc.
Viper will use impera�ve-style control-flow mechanisms such as the for loop and while
loop.
Viper will also use if/else/elif statements.
Viper will be able to perform addi�on, subtrac�on, mul�plica�on, division, compare (greater
than, less than, equals), modulus, powers, concatena�on, and increment/decrement. We will
also have arrays and tuples of primi�ves. Just like in OCaml, tuples can also contain
elements of mul�ple datatypes.
An array of char types would cons�tute a string, and we plan to implement a string
class in our standard library.

Keywords

Keyword Usage

char Declares a character

int Declares an integer

float Declares a floa�ng-point number

bool Declares a boolean

nah Declares our equivalent of a nulltype

panic Throws an excep�on

func Defines a func�on

return Specifies the return value of a func�on

abort Our equivalent of a break statement

Keyword Usage

skip Skips the loop itera�on - equivalent of con�nue

for/while Defines a for or while loop, respec�vely

if/else/elif Controls the flow of if, else, and elif statements

in Specifies direct, index-free itera�on

true true boolean value

false false boolean value

Control Flow

Control flow mechanisms resemble for/while loops in either Python, or C:

for int element in arr:
 print(element)

while (condition):
 print("chilling")

Viper uses if/else/elif condi�onals like Python:

if a == b:
 print(a)
elif a > b:
 print(b)
else:
 print("something is wrong")

The abort keyword is the equivalent of break in Python; it stops the loop:

for (int i = 0; i<sizeof(arr); i++){ # More on indentation vs explicit scopin
 print(arr[i]);
}

for int element in arr:
 if element == 2:
 print("found it")
 abort

The skip keyword func�ons much like con�nue in Python; it rejects all the remaining
statements in the loop and returns the control back to the top of the loop:

for int element in arr:
 if element == 2:
 print("I'm going to skip the remaining statements")
 skip
 print("This element isn't a 2")

Func�ons

Func�ons in Viper resemble func�on calls in either Python, or Go. A basic func�on may be
defined and invoked as follows:

nah func foo():
 print("Hello World!")
foo()

Viper also allows for explicit scoping, rather than using indenta�on. This allows us to move
to a more well-defined scoping system, especially when we want to escape Python’s well
known tabs/spaces confict:

nah func foo() {
 print("Hello World!");
}
foo()

Viper also supports arrow func�ons, more on which may be found below. However, a
sample arrow func�on may either be anonymous, or assigned to a func�on type variable:

int func apply(int x, int func f):
 return f(x)

int squared = apply(10, int (int x) => x * x)

An assigned arrow func�on may look as follows:

func f = int (int a, int b) => a + b
int result = f(10, 20)

Comments

As many other popular scrip�ng languages use # to denote single-line comments, we feel it
is natural to con�nue this tradi�on.
However, a pain point of Python is the lack of “real” mul�-line comments so we will
implement mul�-line comments using /* and */ tokens.

Example:

who decided foo and bar would be fun words to use for code examples?

/* old code here:
func foo() {
 print("bar");
}
*/

Memory

The Viper language will be call by value like Python is, and all memory management will be
handled internally by a simple garbage collector.

Unique Features

Sta�cally Typed Variables

As we wanted to develop a compiled scrip�ng language that shared our favorite aspects of
other languages, we decided that using sta�c typing would make full use of the compiler
and help to alleviate the run�me errors that make dynamically typed languages so tedious
to use on systems where safety and security is key. Defining the type would be C-style in
that variables must be declared or ini�ated with a type. Func�on return types and
parameters must also be specified.

Examples:

int big_number;
float small_number = 1.0;

func int add1(int a) {
 return a+1;
}

Scope Defini�on Op�ons

Scope in Python is tradi�onally defined with whitespace.
Viper retains this op�on, while also giving users the alterna�ve (via curly braces) to take a
more tradi�onal approach and avoid whitespace concerns.
With this method, everything within the scope will be equivalent to four added spaces of
indenta�on.
Note that if this method is used, whitespace will be ignored for everything within the scope
and every statement within a scope defined by {} must end with a semicolon.
For example, a for loop can be established in a number of different ways:

for string elem in list:
 print(elem)

Is the same as:

for string elem in list {
 print(elem);
}

Is the same as:

for string elem in list
{
 print(elem);
}

Is the same as:

for string elem in list
{ print(elem); }

Examples of snippets that wouldn’t work are:

for string elem in list
{
 for char letter in elem:
 print(letter)
}

Once you use tradi�onal scoping, whitespace is ignored. The other way around would work
fine though:

for string elem in list:
 for char letter in elem
 {
 print(letter);
 }

This will func�on in the same manner as expected with func�on defini�ons, condi�onals,
etc.

Arrow Func�ons

Similar to arrow func�ons in Javascript, or Python lambda func�ons, users will be able to
define func�ons on the fly with arrow func�ons.
Users are required to specify the type of the arrow func�on’s return value and parameters.
The syntax is as follows:

<ret_type> (<param_type> param1, ..., <param_type> paramN) => {
 return complex expression output
}

<ret_type> (<param_type> param1, ... , <param_type> paramN) => :
 return complex expression output

Addi�onally, these arrow func�ons can be assigned to func�on variables:

func x = <ret_type> (<param_type> param1, ...,<param_type> paramN) => {
 return expression output
}

Note that even with zero parameters or one parameter, the () are s�ll necessary

func myFunc = <ret_type> () => expression output

<ret_type> (<param_type> param) => expression output

Example Func�on Calls:

int func y(int x, int y, func z) {
 return z(x + y);
}

y(10, 20, int (int a, int b) => a * b);

Anonymous Func�on Call Example

nah (int a, int b) => {
 print(a);
 print(b);
} (10, 20);

Addi�onal Features

<ret_type> (<param_type> param1, ..., <param_type> paramN) => expression outpu

The following features make wri�ng Viper simple and easy.

Ternary operator

Viper supports a JavaScript-like ternary operator for variable assignment. Unlike JavaScript,
however, these operators can be chained together with the | symbol (similar to what we
see in OCaml’s pa�ern matching):

int x = <boolean_exp> ? <output_if_true> : <output_if_false>

An example with chaining:

int y = rand_int()
int x =
 (y < 0) ? -1 # Set x to -1 if y < 0
 | (y == 0) ? 0 # Set x to 0 if y is 0
 | (y < 5) ? 1 # Set x to 1 if y is in the range [1, 5]
 : 2
If none of the above are true, set x to 2.
This catch-all case must be last in the chain.

Iterator indexing

Viper makes an iterator’s index available to the user, even when itera�ng directly over
elements using the in keyword. We plan to either accomplish this by enforcing that the
in operator returns a tuple, which can then be unpacked within the loop body. The second
tuple value can also be implicitly ignored.

int[] array = [3, 2, 1]
for int num, int idx in array:
 print(idx)

stdout:

0
1
2

We expect to include other examples of syntac�c sugar in the future.

A Cool Example in Viper

Let’s look at func�on overloading, which is now made possible in Viper (due to explicit
typing)

func add = int (int x, int y) => x + y;
func add = float (float x, float y) => x + y;
func add = char (char x, char y) => x + y;

int intResult = add(10, 20);
float floatResult = add(10.1, 10.2);
char charResult = add('a', 'b');

Another cool example could be something like the GCD func�on:

int func recursiveGCD(int a, int b) {

 func conditional = int (int x, int y) =>
 x == 0 ? y : y == 0 ? x : nah;

 func swappedGCD = int (int x, int y) =>
 x > y ? recursiveGCD(x-y, y) : recursiveGCD(x, y-x);

 int check = conditional(a, b);
 if (check == nah) {
 return swappedGCD(a, b);
 }
 return check;
}

