
1

TiMRS
Timers, Made Readable and Simple

Spring 2021

Jeff Kline jk4209 - Systems Architect
Faisal Rahman fr2422 - Language Guru
Daniel Rindone dcr2165 - Project Manager
Eric Webb edw2139 - Tester

1. Introduction

Using devices to measure an elapsed duration of time has proven useful for various purposes
across human history. From the earliest Babylonian water clock to smartphones, the basics of
these devices have essentially remained the same: mark some starting point, mark some ending
point, then “start” the clock. However, in our modern world, timers have become increasingly
more complex, often incorporating a number of different procedures when facilitating a task.

TiMRS is a programming language designed to give users a new way to easily design and script
complex timers for any task. This method allows one to code complex timing procedures using
TiMRS’ built-in timer types with customizable durations and functionalities. These include
accounting for repetition, intervals, multiple processes, saving sessions, and other techniques to
track and perform any task where it may be useful.

Pending success of the basic components outlined above, we may seek to further incorporate
other possibilities within TiMRS that may be more specifically useful for programmers.
Examples can include enabling the execution of other programs or scripts within the framework
of the TiMRS language.

2

2. Language Overview:

TiMRS is a mixture of Python and C orientated syntax. The use of Python keeps the
programming of timers simplistic, while incorporating C allows the compiler to parse easier and
have more direct program memory management, should it be needed. A major component of
running a TiMRS script is providing the user with a graphical clock and some indication of stage
of/progress through the timing routine.

2.1 Data Types:

Primitive data types:

Complex data types:

Type Description

int Integer
Example: 10

string String:
Example: “hello”

bool Boolean
Example: True

Type Description

Timer string label
hr
min
sec
bool start
bool stop

hr int value, 3600 seconds

min int value, 60 seconds

sec int value, 1 second

list array to store Timer(s)

3

2.2 Language Components:

Control Flow:

TiMRS-specific commands:

Logical Operators:

Comparison Operators:

Mathematical Operators:

// Single line comments

/* */ Multiple line comments

if, elif, else Conditional statements

for/while Conditional loop statements

rounds Looping condition based on ‘#’ value

start Starts a timing event

increase Increments the timer by a specified amount

decrease Decrements the timer by a specified amount

del Removes a timer object

|| Standard ‘or’

&& Standard ‘and’

! Standard ‘not’

!=, ==, <, >, <=, >= Standard operations for numerical relation

+, -, *, /, %, ++, -- Standard operations for mathematical
arithmetic

= General assignment

!=, ==, <, >, <=, >= Standard operations for numerical relation

4

 3. Example Programs:

Simple scripting:

start timer 5 min // start a timer for 300 secs

start timer 1 hr 5 min 3 sec // starts a timer for 3903 secs

start 10 rounds:

timer 1 min // loops a 60 sec timer 10 times

start 2 rounds: // run everything indented twice

timer 10 sec

start 2 rounds: // nested rounds

timer 30 sec

timer 1 min 10 sec // total timer ran for 280 seconds

Use of the ‘Timer’ object:

Timer cook_egg = 1 min 10 sec // creates a timer structure labeled

// “cook_egg”

/*

Timer {

 str label = cook_egg

 int hr = 0

 int min = 1

 int sec = 10

 bool start = false

 bool stop = false

}

*/

start timer cook_egg // runs timer x for 70 seconds

start 10 rounds: // loops cook_egg 10 times

timer cook_egg

start 2 rounds: /*

timer cook_egg

start 2 rounds: A complex round running timers in sequence

timer 30 sec

timer cook_egg */

increase timer cook_egg 30 sec // changes timer to 1 min 40 sec

decrease timer cook_egg 1 min // changes timer to 40 sec

del timer cook_egg // deletes the timer object

