
Seaflow Programming Language Proposal
Rohan Arora, Junyang Jin, Ho Sanlok Lee, Sarah Seidman

ra3091, jj3132, hl3436, ss5311

Overview
Modern applications handle many asynchronous events, but it is difficult to model such
applications using programming languages such as Java and JavaScript. One popular solution
among the developers is to use ReactiveX implementations in their respective languages to
architect event-driven reactive models. However, since Java and JavaScript are not designed
for reactive programming, it leads to complex implementations where multiple programming
styles are mixed-used. Seaflow is a language designed to address this issue by supporting
some of the core principles of ReactiveX and reactive programming natively.

Our goals include:

1. All data types are immutable, with the exception being observables, no pointers
2. The creation of an observable should be simple
3. Natively support core principles in the ReactiveX specification

Language Details

Basic Syntax
Seaflow is statically and explicitly typed; variable types must be declared at compile time, and
different types cannot be assigned to each other without casting.

int add(int a, int b) {
 int c = a + b;
 return c;
}

int a = 0;
double b = add(a + 5); // error

Comments

Data Types and Operations
Seaflow supports following primitive types: integer, long, short, character, double, float

Primitive types can be compared with ==, !=, <=, >=, &&, || and manipulated with *, /, +, -, <<,
>>, |, &. They are all signed.

// single-line comment

/*

 * multi-line comment
 */

Data Type Description Examples

int An integer type, 4 bytes int x = 3;
0 || x; // True
x * 4; // 12
x > 4; // False

long A long integer, 8 bytes long a = 4;
long b = 3;
0 && a; // True
a * b; // 12
b > a; // False

short A short integer, 2 bytes short a = 4;
short b = 3;
0 && a; // True
a * b; // 12
b > a; // False

char An integer, 1 byte ‘a’ == ‘a’; // True
‘a’ == ‘b’; // False

double A floating point type, 8 bytes double a = 3.0;
a == 3; // True
double b = a * 4; // 12.0, converted
3.0 > 4.0; // False

Structs and arrays may be composed of these primitive types. Missing fields or values will be
initialized to 0.

Reserved Keywords
The following are reserved words:

break, char, continue, do, double, else, float, for, if, int, long, print,

return, short, sizeof, struct, typedef, void, while, ($)

float A floating point type, 4 bytes float a = 3.0;
a == 3; // True
float b = a * 4; // 12.0, converted
a > 4.0; // False

/* Structs */

struct foo {
 int field1;
 char field2;
 char[] name;
};

struct foo bar = { 16, ‘a’, “example” };

/* Arrays */

int[] arr = { 1, 2, 3, 4, 5 };

/* Arrays support length, indexing, concatenation and slicing */

int[] myarr = {1, 2, 3};
int[] myarr2 = {4, 5, 6};

int myarrLength = myarr.length;

int[] all = myarr + myarr2; // {1,2,3,4,5,6}

int x = myarr[0]; // 1
int[] slice = all[0:2]; // {1,2}

char[] str = “a string”;

typedef
Seaflow supports typedefs.

Control Flow, Loops
Seaflow does not support if “statement”. “if” in Seaflow is an expression and must be evaluated
to a value. Parentheses are always required for conditions, but braces are not necessary for
single-line values.

The way Seaflow supports loops is still under discussion.

Core Language Features

Immutability
All objects are immutable after they are created. Moreover, reassigning to an existing name is
also not allowed, so that developers are naturally forced to write pure codes.

typedef int size_t;
struct my_struct_type my_struct_variable;
typedef struct my_struct_type my_short_type_t;

char grade = if (score > 92) ‘A’ else if (score > 85) ‘B’ else ‘F’;

if (score > 92) { // not supported
 grade = ‘A’;

}

int $i = 0

void helloWorld(int i) {
 print("Hello World!");
}

$i.subscribe(helloWorld, $i < 10, $i + 1); // for loop
$i.subscribe(helloWorld, $i == 10); // infinite while loop

int a = 10;

https://en.wikipedia.org/wiki/Pure_function

Higher Order Functions
Seaflow supports higher order functions. Functions must be typed.

Observables
Observable in Seaflow is an implementation of a particular hot observable in ReactiveX
specification called BehaviorSubject. We can declare an observable instance of any base type
by using a $ sign.

A function with a single input type can subscribe to the observable by calling .subscribe:

● .subscribe((T)->void func)

○ .subscribe takes a function of type (T)->void as the input. This function is
invoked when the observable emits a value.

a = 5; // error

int arr = [1, 2, 3];
arr.add(4); // not supported
arr[2] = 4; // error
arr.remove(); // not supported

user.username = "Joe"; // error

int function(int x, (int)->int func) {
 return func(x);
}

function(10, (x)->{ x + 10 });

int $a; // initializing an int-type observable instance, a
int $b = 5 // initializing an observable with initial value

$b = 3; // re-assigning is possible with observable types

void observer(int num) {
 print(num);
}

$a.subscribe(observer);

In addition to .subscribe, all observables of type T support following functions:
● .map((T)->X func)

○ Takes a function of type (T)->X as the input, where X could be any type. .map
function returns another observable with type X. The function func is called for
each upstream value and the returned value will be passed to the downstream.

● .combine($T obs, (T, T)->X func)

○ Takes another observable of type T and a function of type (T, T)->X func.
.combine function returns a new observable with type X and the returned
observable is subscribed to the observable and the obs.

● .complete()

○ Removes all subscriptions that the observable currently has.

Memory
Seaflow is not garbage collected. Primitive types are placed on the stack, Arrays, Structs and
Observables are placed on the heap. Developers can manually free heap objects using free.

Next Steps
Currently, Seaflow is designed to be a single-threaded language. Our next goal is to allow
multi-threaded programming by supporting “.observeOn” in ReactiveX specification. With
“.observeOn” programmers can specify the thread that executes downstream.

int $c = $b.map((x)->{x + 10});

// or

$c = $b + 10;

int $d = $b.combine($c, (x, y)->{ x + y });

// or

$d = $b + $c;

$d.complete();

free($user);

$user.map(...) // runs on calling thread
 .filter(...) // runs on calling thread
 .observeOn(Thread.IO)
 .filter(...) // runs on IO thread
 .map(...) // runs on IO thread
 .observeOn(Thread.main)
 .subscribe(...) // runs on Main thread

