

Team Proposal

{Py}{Thon}

COMS 4115 Spring 2021
February 3rd, 2021

Team members
Cameron Miller (cm3959)
Daniel Hanoch (dh2964)
Gabriel Clinger (gc2821)

George DiNicola (gd2581)

1 Overview of {Py}{Thon}

{Py}{Thon} is a language inspired by Python, but without the constraint of indentation to
indicate blocks. {Py}{Thon} retains the syntax that makes Python an easy and fun language,
while enforcing curly braces to indicate blocks and semicolons to indicate statement endings to
increase portability. In addition, {Py}{Thon} has the notion of a relation, which is a concept
from logic programming. Specifically, our language will attempt to mimic this from the
first-order-logic programming language, Prolog.

2 Motivation

The motivation for our language was to create a version of Python that is not bound by
indentation rules. For many programmers who use Python, using a Python script on a different
machine or deploying it into a production environment can be a nightmare when you receive the
error “IndentationError: unindent does not match any outer indentation level”. After this, Python
users have no idea if one indentation is broken or all of them. Having to go back into your script
and delete until the previous line then press “enter”, then “tab” until your desired definition. We
set out to create a version of Python that uses curly braces rather than indentation (like Java or C)
to avoid this issue.

3 Language Details

4 Reserved Keywords

print, if/elif/else, for/while, def, in, or/and, return, true/false, is

5 Built-in Functions

● print()
● join()

6 Comments

● Block comments only ## comment ##

Data types and data
structures

Operators Description Example

Integers =, ==, !=, <, <=, >, >=,
*, /, +, -, ^

A regular integer type
int

x = 6;
y = 4 ^ 7;

Booleans =, ==, !=, and, or Evaluates to
true/false

rainy = true;
wet = false;
rainy and wet;
(evaluates to false)

Floats =, ==, !=, <, <=, >, >=,
*, **, /, +, -, ^

A double-precision
float type

0.3 + (⅕)
(evaluates to 0.5)

Strings =, ==, !=, join Regular string type.
Can also be a
character

a = “Colu”;
b = “mbia”;
join(a,b); (evaluates
to “Columbia”)

Lists In (evaluates to
true/false), append

Can hold only
homogeneous-type
collection

p = [1,2,3];
p.append(9);

Relations is (evaluates to
true/false)

A data structure that
establishes
relationship and
returns a boolean for
arbitrary queries

r =
<bob:loves:mary>;
Might implement at
a later time

7 Example Code

7.1 Loops
for (e in list) {

This is a block comment ##
x = “Hi”;
join(x,e);

}

x = 0
while (x < 10) {

print(x);
x++;

}

7.2 if/elif/else
if (x > 100){

print(“I am larger than 100!”);
} elif (x > 10 and x <= 100) {

print(“I am smaller than 100, but not 10!”);
} else {

print(“I am smaller than 10”);
}

7.3 User-defined function
def gcd(x, y) {

if (y ==0) {
return x;

 } else {
 return gcd(y, x % y);

 }
}

8 Roles and Responsibilities

● Project Manager - Daniel Hanoch
● Language Guru - Gabriel Clinger
● System Architect - Cameron Miller
● Tester - George DiNicola

9 Specifics
● Language Type: imperative
● Type Scope: static
● Type Strength: static (maybe dynamic)
● Garbage collection: won’t have it
● Evaluation: strict
● Immutability: mutable
● Concurrent Programming Option: No
● Type Inference: yes

10 Question for instructors:

● Will there be too much overhead to have type inference?
● Will there be too much overhead to have dynamic type strength?
● Is the relation data structure feasible?

