

Pixel

Alex Anthony Cortes-Ose (ac4441)
Dillon Davis (dhd2121)
Jessica Kim (sk4711)
Jessica Peng (jp3864)

1 Introduction

Pixel is a language that is designed to process and manipulate images. The idea for our language
was originally inspired by the concept of applying filters to images. On social media platforms
such as Snapchat and Instagram, there are pre-set filters that people are able to apply to their
photos. Every user has access to these filters, and applying these filters may alter each different
photo in its own unique way depending on the state of the original photo.

We wanted to create a language that could not only create these filters, but perform the various
tasks which are fundamental to basic image processing. With our language, it is easy to write
algorithms that perform enhancement, transformation, edge detection, and basic analysis on
images (see section 2, use cases). An ​image​ is its own primitive type, containing a ​pixel​ matrix;
pixel​ is another primitive type. These types enable extended functionality and make available
information useful in many image processing applications.

The syntax for our language draws from Python and JavaScript in several notable ways. The
design of Python libraries and its array and matrix manipulation features are crucial for image
processing, and we admire the simplicity of Python in this aspect. We were also inspired by the
map, forEach, and reduce (which is equivalent to fold_left) methods for lists in JavaScript, the
explicit code structure with semicolons and easy scoping with brackets, the language’s arrow
syntax for anonymous function declaration, and its support for higher order functions.

2 Use Cases
Our language can be used to write and evaluate many fundamental image processing
algorithms and can achieve various image enhancements, transformations, and analyses.
Some of these include:

● noise removal
● image sharpening
● Thresholding

● color shifting
● Blurring
● Edge and feature detection (texture analysis corners)
● blob and object detection
● contrast enhancement
● Rotation
● Enhanced mapping
● Altering rgb order
● Flipping pixel order (flip image)
● Convert image to black and white
● Convert image to grayscale
● Encrypt image
● Rank filters, thresholding
● Create an RGB representation of a gray-level image.

3 Language Details

3.1 Data Types

Data Type Description

int 4-byte signed integer type integer = 4

str Array of ASCII characters string = “hello world”

float 8-byte floating point number fl = 3.5

matrix Mutable data structure storing
multi-dimensions of objects

mat =
[[1 0 0 1

 0 1 0 1
 0 0 0 0]

[0 1 1 1
 1 0 0 1

 1 0 1 0]]

pixel A pixel is a special tuple with
functions to obtain r, g, b values,
double precision color values, and
supports indexing. Can be
initialized as a single element for

pix = (120, 70, 54);

r = pix.red;
g = pix.green;

b = pix.blue;

In our language, a boolean true or false value is represented by the integer values of either 1
or 0, respectively. This enables thresholding and binary image generation, a common image
manipulation task.

3.2 Keywords

The following keywords are reserved for this language:

fun, pixel, matrix, image, int, float, while, for, in, if, else,

return, true, false, len, range, str, blob, self, list, void, object

3.3 Operators

grayscale images. db_list = pix.doubles; //
[0.4705, 0.2745, 0.24]

pix2 = (106);

image A specific type of matrix that
represents an image consisting of
each row as a list of pixels within
an outer list

img =

[

[[255,0,0],[0,25,100],[0,
56,23]],

[[205,12,56],[20,25,0],[8

2,3,1]],

[[0,12,0],[111,25,90],[0,

9,120]]
]

list A standard array, consisting of
elements of the same type

li = [1, 2, 3, 4, 5]

Operator Operation

+ Scalar, matrix-scalar, element-wise matrix addition

- Scalar, matrix-scalar, element-wise matrix subtraction

Element-wise matrix operators ​+​,​ -​,​ .*​,​ ./​ perform the given operation with every
corresponding element between matrices and return a matrix with their results in the same
positions. The dot product between two matrices can be done with ​*​. Comparison operators
return either 1 for true or 0 for false.

3.3 Functions

* Scalar, matrix-scalar, matrix (dot product) multiplication

/ Scalar, matrix-scalar division

% Scalar modulo

>, >=, <,

<=, ==, !=

Scalar, boolean, matrix-scalar, element-wise matrix comparison

.* Element-wise matrix multiplication

./ Element-wise matrix division

 Casts a given input into the specified type

Function Description Return type

len(s) Returns the number of items in an object.
s​ may be a string, bytes, tuple, list,
dictionary, set, etc.

int

print() Prints any given data type to stdout void

range(int start, int

finish, int inc)
Represents an immutable sequence of
numbers from start (inclusive)to finish
(exclusive) with an optional increment
(default of 1)

list

sum(list l)
OR

sum(matrix m)

Returns a sum of each of the elements in
either the provided list or provided
matrix

int, float

int(float f),

int(str s)

Casting a float or string into an int int

3.4 Built-in Image Functions

3.5 Matrix Functionality

float(int i),
float(str s)

Casting an int or string into a float

image

str(int i),
str(float f),

Casting an int or float into a string str

matrix(list l) Casting a list into a matrix matrix

image(matrix m) Casting a matrix into an image image

image_in(str s) Converts either a filepath string or
base64 encoded string into an image type

image

image_out(image i)

OR
image_out(matrix m)

Converts either an image or matrix into
an image on the hard disk

image

Name Description Return Type

image.metadata Returns an object
containing relevant
metadata for the image
datatype (filename, size,
file-size, compression type,
color type, pixel size)

object

image.matrix() Returns matrix of pixels
representing image

matrix

Name Description Return Type

transpose() Transposes a given matrix matrix

zeros(int r, int c) Creates a matrix of zeros matrix

3.6 Features

● Single line comment: ​//
● Multi line (nestable) comment:​ /* */
● Array and matrix indexing is done in the style of numpy array slicing,

m = [

[[10 10 10], [10 10 10], [10 10 10]],
[[10 10 10], [10 10 10], [10 10 10]],

[[10 10 10], [10 10 10], [10 10 10]]
];

 first_and_second_row = m[0:2, :];

4 Code Samples

1. Convert an image to grayscale:

with r rows and c columns

ones(int r, int c) Creates a matrix of ones
with r rows and c columns

matrix

identity(int s) Creates an identity matrix
with s rows and s columns

matrix

Name Description

matrix​.rows An int describing the number of rows of a given matrix

matrix​.cols An int describing the number of columns of a given matrix

matrix.KERNELS An object containing commonly used image processing kernels
(various blurs, sharpens, and edge detection matrices), exists as a
property of the matrix type

2. Permute color channels of an image:

fun​ ​grayscale​(​image​ img) {
 m = img.matrix();

 row_size = m.rows;
 column_size = m.cols;

 new_img = matrix.zeroes(row_size, column_size);

 ​for​ pixel in m {
 avg = (pixel.r + pixel.g + pixel.b) / 3;
 New_img[pixel.x, pixel.y] = [avg, avg, avg];

 }

 ​return ​new_img;
}

fun​ ​permute_color_channels​(​image​ img, ​list ​perm)​ ​{
 m = img.matrix();

 row_size = m.rows;
 column_size = m.cols;

 new_img = matrix.zeros(row_size, column_size);

 ​for​ row in range(row_size) {
 ​for​ column in range(column_size) {
 new_img[row, column, perm[0]] = m[column, row, 0];
 new_img[row, column, perm[1]] = m[column, row, 1];

 new_img[row, column, perm[2]] = m[column, row, 2];
 }

 }

 ​return ​new_img;
}

3. Encrypt an image with a key:

fun​ ​encrypt​(​image​ img, ​list ​key) {
 m = img.matrix();

 row_size = m.rows; #instead of matrix.shape[0]
 column_size = m.cols; #instead of matrix.shape[1]

 new_img = matrix.zeros(row_size, column_size);

 for row in range(row_size) {
 for column in range(column_size) {

 r = m[column, row, 0] ^ key[row];

 g = m[column, row, 1] ^ key[row];
 b = m[column, row, 2] ^ key[row];

 new_img[column, row, :] = (r, g, b);
 }

 }

 ​return ​new_img;
}

