
Lingo Programming Language Proposal

Sophia Danielle Kolak - sdk2147
Jay Karp - jlk2225

Benjamin Flin - brf2117

January 2021

1 Overview of Lingo
The Lingo programming language is a functional programming language with rank-
n polymorphism, typeclasses and linear types. Our language is heavily inspired by
Haskell’s implementation linear-core1, however, we extend Haskell’s syntax with a
few features such as a specialized syntax for linear do notation, and a way of writing
linear arrows. We choose Haskell as inspiration for our syntax design because it is
compact and easy to understand. Unlike Haskell’s linear core, however, we wanted the
design of our language to highlight linearity as primary feature.

The Goals for this project are:

• Haskell-style syntax with common features such as do-notation, list comprehen-
sion, algebraic data types with polymorphism in multiplicity and type. In order
to implement do-notation we will have limited type inference to infer the type of
linear and non-linear binds.

• Type safety throughout the language to ensure safe, reliable and understandable
code.

• Linearity in order to provide safe manual memory management and safe usage
protocols of external resources such as file operations and networking.

2 Language Details

2.1 Linearity
We extend the normal function arrow → with a linear one (. The linear arrow f :
A ( B functions the same as a normal function arrow, with one additional guarantee:
if the output ( f u) : B is consumed once, then the input u : A is consumed once. This
guarantee is enough to ensure that the programmer follows a resource protocol.

1https://arxiv.org/pdf/1710.09756.pdf

1



The following examples show how implementing linearity can be useful for writing
safe code. In the illtyped function, because malloc returns of Ptr of usage 1, the output
value can only be used once. When you try to apply this value to the someOp’ function,
the compiler realizes that p can only be used once, and therefore does not compile. In
the welltyped function, malloc returns a pointer of usage 1, and then passes it to a
function which only consumes this pointer once.

1 malloc : Int -> IO 1 Ptr

2 someOp : Ptr ( IO 1 Ptr

3 someOp' : Ptr -> IO 1 Ptr

4 free : Ptr ( IO ω ()

5

6 illtyped : IO ()

7 illtyped = do

8 p � malloc 10

9 p' <- someOp' p

10 free p'

11

12

13 welltyped : IO ()

14 welltyped = do

15 p � malloc 10

16 p' � someOp p

17 free p'

We also refer to these usages as Multiplicities, where someOp has a multiplicity of 1,
and someOp’ has a multiplicity of ω, or unrestricted. Note that IO is parameterized by
it’s multiplicity 1 or ω, which indicates how the resultant value must be used. This is
true of any Monad in our language. From that fact, we can derive a class definition for
Monad in lingo consisting of the following:

1 class Applicative m => Monad m : Mult -> Type -> Type where

2 (>>=) : ∀ a b. ∀m p q. m p a -> (a -p> m q b) -> m q b

In the monad definition, the p in

(a -p> m q b)

exactly encodes the constraint that the a in

m p a

2



must be used with multiplicity p. Note that multiplicities are not of kind ‘Type’ but
have their own kind.

2.2 Data Types and Operations
Primitive data types,

Data Type: Description: Typeclasses:

Int{8, 16,32 64} An integral type of size {1,2,4,8} bytes
Eq, Ord, Semigroup,
Monoid, Semiring, Ring,
etc.

Char A character type of size 1 byte, the same as
Int8

Eq, Ord, Semigroup,
Monoid, Semiring, Ring,
etc.

Float 32-bit floating point number
Eq, Ord, Semigroup,
Monoid, Semiring, Ring,
Field etc.

Double 64-bit floating point number
Eq, Ord, Semigroup,
Monoid, Semiring, Ring,
Field etc.

Bool Boolean values, either True or False Eq, Ord

Ptr Can only be obtained linearly and allows
tracking and keeps track of pointer size Eq, Ord

Data types can be declared as follows:

1 data D p1 p2 . . . pn : k1 → k2 → . . .→ kn where

2 (ck : A1 →π1 . . .→ Ank →πnk
D)m

k=1

This reads as a data constructor D has kind k1 → k2 → . . . → kn with constructors ck

of type A1 →π1 . . .→ Ank →πnk
D with k ranging from 0 to m.

One simple usage could be:

1 data Maybe p a : Mult -> Type -> Type where

2 Just : a →p Maybe

3 Nothing : Maybe

Note that this definition of Maybe allows us to define the Monad instance given the
monad definition in 2.1

2.3 Keywords
The following keywords are reserved in Lingo. if, then, else, let, in, data,
case, of, where, module

3



2.4 Comments
Our commenting system is the same as Haskell’s in that we use double dash – for single
line comments and {- -} for multi-line comments. We also support nested comments.

1 -- x = 42, this is a single line comment

2 main : IO ()

3 main = do

4 putStrLn "Stephen Edwards 42"

5

6 {-

7 This is a multi-line comment

8

9 why isnt this working!?

10 main : Int -> Int

11 main = main + 1

12 -}

3 Design Decisions
Lingo will have limited type inference. This means that most if not all expressions
have to be annotated. Type inference in System-F polymorphism is not trivial on its
own to implement since it is undecidable in general, let alone the extension to type-
polymorphism to multiplicity-polymorphism. Although recent work has solved2 infer-
ence for rank-1 multiplicity polymorphism, we believe that inferring multiplicites in a
rank-n setting with top-level annotations and typeclasses remains open.

Because we have little type inference, we sometimes have to provide type parame-
ters to type or multiplicity abstractions. For example:

1 id : ∀ a. a -> a

2 id x = x

3

4 y : Int

5 y = id {Int} 0

6

7 -- Types can be inferred in simple cases

8 z : Bool

2https://arxiv.org/pdf/1911.00268.pdf

4



9 z = id False

10 -- equivalent to

11 -- z = id {Bool} False

The identity function is parameterize over the type. In most cases, the type is easy
to infer from the parameter passed, however, in more complex cases the implicit type
parameter will have to explicitly provided.

Although Lingo provides low level interfaces for memory manipulation, algebraic
data types are garbage collected. This simplifies many of the types and makes pro-
gramming as simple as it would be in Haskell.

4 Standard Library
We plan to include a small standard library to ship with Lingo. This will be similar to
Haskell’s prelude, including folding, mapping etc.

5 Mutliplicity Checker
Below is our rudimentary multiplicity checker, which validates that multiplicities are
used in the correct way in the correct context. It is only a proof of concept at this point.

1 import Control.Monad.Except

2 import Control.Monad.State

3 import Data.List ((\\))

4 import Data.Map (Map)

5 import qualified Data.Map as M

6 import Data.Maybe (fromJust)

7

8 data Base

9 = Int' Int

10 | Bool' Bool

11 deriving (Show)

12

13 data Binop = Add | Subtract | Multiply

14 deriving (Show, Eq)

15

16 data Expr

17 = BaseExpr Base

18 | Var String

19 | Lam String Mult Type Expr

20 | App Expr Expr

21 | MLam String Expr

22 | MApp Expr Mult

23 | Op Binop Expr Expr

5



24 | If Expr Expr Expr

25 deriving (Show)

26

27 data Mult

28 = One

29 | Unr

30 | MVar String

31 | Plus Mult Mult

32 | Times Mult Mult

33 deriving (Show, Eq)

34

35 data BaseT = TInt | TBool

36 deriving (Show, Eq)

37

38 data Type

39 = TBase BaseT

40 | TLam Mult Type Type

41 | Forall String Type

42 deriving (Show, Eq)

43

44 data Err

45 = NotInScope String

46 | Mismatch Type Type

47 | NonLinear String

48 | NotAFunction Type

49 | NotAMLam Type

50 | Unsatisfiable Constraint

51 deriving (Show)

52

53 -- p <= q

54 data Constraint = Constraint Mult Mult

55 deriving (Show, Eq)

56

57 type Env = Map String Type

58

59 type Usage = Map String Mult

60

61 type Check = ExceptT Err (State [Constraint])

62

63 mult :: Mult -> Usage -> Usage

64 mult m = fmap (simp . Times m)

65

66 times :: Usage -> Usage -> Usage

67 times a b = simp <$> M.unionWith Times a b

68

69 plus :: Usage -> Usage -> Usage

70 plus a b = simp <$> M.unionWith Plus a b

71

6



72 simp :: Mult -> Mult

73 simp m = case m of

74 (Plus _ _) -> Unr

75 (Times a One) -> a

76 (Times One a) -> a

77 (Times Unr _) -> Unr

78 (Times _ Unr) -> Unr

79 a -> a

80

81 type Subst = (Mult, Mult)

82

83 class Substitutable a where

84 subst :: a -> Subst -> a

85

86 instance Substitutable Mult where

87 subst (MVar x) (MVar y, z) = if x == y then z else MVar x

88 subst (Times a b) x = Times (subst a x) (subst b x)

89 subst (Plus a b) x = Plus (subst a x) (subst b x)

90 subst a _ = a

91

92 instance Substitutable Type where

93 subst (TLam m t t') x = TLam (m `subst` x) (subst t x) (subst t' x)

94 subst (Forall p t) x = Forall p (subst t x)

95 subst t _ = t

96

97 instance Substitutable Constraint where

98 subst (Constraint x y) z = Constraint (subst x z) (subst y z)

99

100 instance Substitutable a => Substitutable [a] where

101 subst l a = flip subst a <$> l

102

103 reduce :: [Constraint] -> Check [Constraint]

104 reduce [] = return []

105 reduce (c : cs) = do

106 cs' <- reduce1 c cs

107 cs'' <- reduce cs

108 return (cs' ++ cs'')

109 where

110 reduce1 :: Constraint -> [Constraint] -> Check [Constraint]

111 reduce1 c@(Constraint One _) cs = return []

112 reduce1 c@(Constraint _ Unr) cs = return []

113 reduce1 c@(Constraint Unr One) cs = throwError (Unsatisfiable c)

114 reduce1 c cs = return [c]

115

116 addConstraint :: Constraint -> Check ()

117 addConstraint c = do

118 modify (c :)

119 reduceConstraints

7



120

121 reduceConstraints :: Check ()

122 reduceConstraints = get >>= reduce . s >>= put

123 where

124 s = fmap (\(Constraint x y) -> Constraint (simp x) (simp y))

125

126 check :: Expr -> Env -> Check (Type, Usage)

127 check (BaseExpr (Int' _)) env = return (TBase TInt, M.empty)

128 check (BaseExpr (Bool' _)) env = return (TBase TBool, M.empty)

129 check (Var x) env =

130 case M.lookup x env of

131 Just t -> return (t, M.singleton x One)

132 _ -> throwError (NotInScope x)

133 check (Lam x p t e) env = do

134 (t', u) <- check e $ env `M.union` M.singleton x t

135 let m = fromJust $ M.lookup x u

136 addConstraint $ Constraint m p

137 return (TLam p t t', u M.\\ M.singleton x Unr)

138 check (App e1 e2) env = do

139 (t1, u1) <- check e1 env

140 (t2, u2) <- check e2 env

141 case t1 of

142 (TLam q a b)

143 | t2 == b -> return (b, u1 `plus` (q `mult` u2))

144 | otherwise -> throwError (Mismatch t2 b)

145 _ -> throwError (NotAFunction t1)

146 check (MLam p e) env = do

147 (t, u) <- check e env

148 return (Forall p t, u) -- TODO: Subtract any existing p from env

149 check (MApp e1 q) env = do

150 (t1, u) <- check e1 env

151 case t1 of

152 (Forall p t) -> do

153 modify (`subst` (MVar p, q))

154 reduceConstraints

155 return (t `subst` (MVar p, q), u)

156 _ -> throwError (NotAMLam t1)

157 check (Op binop e1 e2) env = do

158 (t1, u1) <- check e1 env

159 (t2, u2) <- check e2 env

160 if t1 /= TBase TInt

161 then throwError (Mismatch t1 (TBase TInt))

162 else

163 if t2 /= TBase TInt

164 then throwError (Mismatch t2 (TBase TInt))

165 else return (TBase TInt, u1 `plus` u2)

166 check (If b e1 e2) env = do

167 (t, u) <- check b env

8



168 if t /= TBase TBool

169 then throwError (Mismatch t $ TBase TBool)

170 else do

171 (t1, u1) <- check e1 env

172 (t2, u2) <- check e2 env

173 if t1 /= t2

174 then throwError (Mismatch t1 t2)

175 else return (t1, u `plus` (u1 `times` u2))

176

177 runCheck :: Expr -> Either Err (Type, Usage, [Constraint])

178 runCheck e = do

179 let (a, s) = runState (runExceptT $ check e M.empty) []

180 (t, u) <- a

181 return (t, u, s)

182

183 -- Ex. runCheck $ App (MApp (MLam "p" (Lam "x" (MVar "p") (TBase TInt) (Var "x")))

184 -- One) (BaseExpr (Int' 0))
185 -- ((Λp.(λx :p int. x)) ω) 0

186 -- Ex. runCheck $ (MLam "p" (Lam "x" (MVar "p") (TBase TInt)

187 -- (If (BaseExpr $ Bool' True) (Var "x") (Op Add (Var "x") (Var "x") ))))
188 -- Λp.(λx :p int. if True then x else (x + x)) : (∀p. int →p int, ω ≤ p)

189 -- Thus, applying the above to a multiplicity is only well-typed if and only if p = ω

9


