
Jiaxuan Pan (jp4131)
Qianjun Chen (qc2300)
Eurey Noguchi (yn2377)
Roger Lu (jl5822)

JQER - PLT Proposal

1. Overview
“JQER” is a Python-like language for binary-tree data structures and operations on them. The
main goal of JQER is to simplify the operations on binary-tree data structures. The language
integrates Node and Tree as built-in data types and their associated operating modules.The
syntax of the language is similar to Python and is designed as a dynamically-typed objects
definition. However, the language introduces additional rules which are applied to the tree data
types.

2. Language Manual

2.1 Data Types
The built-in data types are integers, floats, booleans, strings, nodes, and trees and the language
will be dynamically and strongly typed.

Data type Notation Description Initialization

Numeric int Positive or negative whole numbers.
It has a size of 4 bytes.

a = 1

float Real numbers written with a decimal
point separating the integer and the
fractional parts. It has a size of 8
bytes.

a = 1.5

Boolean boolean Value is either true or false. a = true

Text str Immutable sequences of Unicode
code points.

a = “hello”

Tree tree Store the address of the root Node.
It can construct a tree from a single
node or multiple nodes in which the
subsequent nodes will be added to
the most right pointer of the previous

tree1 =
Tree([node1,node2…
])
tree2 = Tree(node1)

2.2 Operators
The language is implementing operators =, ==, !=, +, -, *, /, +=, -=, <, >, >=, <=, and, or, not. The
operators are applied to most of the data types we defined above but not always support for
every one.

2.2.1 Arithmetic Operators

node.

Node node Stores the value, left pointer, right
pointer.
Only nodes with the same data type
can be in a tree

node1 = Node(2.5)
node1 = Node(“hi”)

Operation Data Type (Notation) Description Example

+ Int, float, str Addition
Specials:
 float + int = int
 str + int/float = error

1 + 2 = 3
1.5 + 2.2 = 3.7
1.7 + 3 = 4
“Hel” + “lo” = “hello”

tree, node tree can be added to
another tree at the
most-right pointer.
node can be added to
a tree at the most-right
pointer.

tree1 + tree2 = tree1
tree1 + node1 = tree1

- Int, float Subtraction
Specials:
float - int = float
int - float = int

2.5 - 1 = 1
2 - 1.5 = 1

tree, node Option1: tree can
remove a node and its
linked nodes.

Option2: tree can
remove a node which
node.value is equal to.

Option1: tree1 - node1 =
tree2 which is without all
nodes below(linked to) its.

Option2: Tree1 - 2 =
Remove nodes which
node.value == 2

*, / Int, float Multiplication,
Division

2 * 2.3 = 4
3 / 2.5 = 1

2.2.2 Assignment Operators

2.2.3 Comparison Operators

Operation Data Type (Notation) Description Example

= Int, float, str, boolean Assign value to
variable

int1 = 2
boolean1 = true

tree, node Same as above tree1 = Tree()
node1 = Node(2)
tree2 = Tree(node1)

+=
-=

Int, float Equal to add the
value to the variable

int1 += 3.4

tree, node Equal to add the
value to the variable

tree1 -= node1
tree1 += node1

str Only support += a = “hell”
b = “o”
a += b

Operation Data Type (Notation) Description Example

>, >=, <, <= int, float larger/less (or equal)
than. int is converted
to float in comparison
with float.

4 > 3 return true
1 <= 1.5 return true

==
!=

int, float, str, boolean Check if the value is
the same, but not the
address.
int is converted to float
in comparison with
float.

“Hello” != “hello!~” return true
1 == 1.0 return true

tree, node Check if the address
and the size of all
nodes are the same.

tree1 == tree1 return true
node1 != node1 return false
tree1 == node1 return Err

2.2.4 Logical Operators

2.3 Syntax
Syntax will be close to the syntax of python. All the rules for original functionality will remain the
same. Some additional rules for typing and new functions for trees will be added. To support
Object-Oriented Programming, the language can define basic classes, but without any
inheritance mechanism. Classes are simply objects with associated methods, local variables,
and constructors.

Operation Description Example

and Returns True if both statements are
true

x<5 and x>3

or Returns True if one of the
statements is true

x<5 or x>3

not Reverse the result, returns False if
the result is true

not(x < 5 and x < 10)

Description General examples

Assigning value var = value1 i = 1

Defining Function def func(arg1, arg2, ...):
 //code

def printSize(tree):
 print(tree.size())

Defining Class class ClassName:
 var1 = value1

class ClassName:
 def __init__(self, value1, value2):
 self.var1 = value1
 self.var2 = value2

class MyClass:
 node = 5

class Student:
 def __init__(self, name,grade):
 self.name = name
 self.grade = grade

 def printName(self):
 print(self.name)

s1 = Student(“abc”, 1)
s1.printName()

Calling Methods var.func(arg1, arg2, …) arr.append(1)
t1.balance()

func(arg1, arg2, ...) print(var1)

Loop for item in list_or_range:
 //code

while condition:
 //code

for i in range(5):
 if i == :
 break
 if i == 2:
 continue
 print(i)

while i < 6:
 if arr[i] == 3:
 break
 print(arr[i])
 i += 1

If Condition if condition:
 //code
elif condition:
 //code
else:
 //code

if i == 0:
 print(i)
elif isIncrement is True:
 print(i+1)
else:
 print(0)

2.4 Functions

2.4.1 Standard Library
● A list data structure with append, insert, remove, pop, len methods is built in as a

standard library.
● range(int) which takes an integer and creates an immutable sequence type.
● print(obj) which prints objects to stdout.
● type(obj) return the type of the object
● to_bst(tree) which takes a tree and turns it into a binary search tree.
● balance(tree) which takes a tree and makes it balanced.
● contains(tree, int/str/float) which takes a tree and checks if any node’s value meet the

given value.
● depth(tree) which returns the tree’s depth.
● inorder(tree, func) takes a tree and a function and traverses each node inorder applying

the function.
● preorder(tree, func) takes a tree and a function and traverses each node preorder

applying the function.
● postorder(tree, func) takes a tree and a function and traverses each node postorder

applying the function.

2.4.2 Function Declaration
Function is declared using python syntax, where it either has or does not have a return value.
Function supports recursion and functions could be declared inside a function.

1. def fib_recur(n):
2. if n <= 1:
3. return n
4. return fib_recur(n-1) + fib_recur(n-2)

2.4.3 Comments
Comments are designed to use python syntax, with a pound key to indicate the start of a single
line comment and three pairs of closed single quotation marks to indicate a multi line comment.

1. # This is a single line comment.

2.

3. '''

4. This is a multi-line comment

5. That has two lines

6. '''

3. Sample Code

3.1 Making Balanced Binary Search Tree
1. tree = Tree([1, 2, 3, 4, 8, 5])

2. bst = to_bst(tree)

3. balanced_bst = balance(bst)

4. def print_tree(x):

5. print(x)

6. inorder(balanced_bst, print_tree)

3.2 Hello World!
1. def helloWorld():
2. node1 = Node(1)

3. node2 = Node(2)

4. tree1 = Tree(node1)

5. tree2 = Tree([node1, node2])

6. if tree1 != tree2:
7. print(“Hello World!”)
8. else:

9. print(“Good-bye World!”)
10. helloWorld()

