
Go-- Programming Language Proposal

Chen Chen, Arya Lingyu Zhao, Yang Li, Yuyan Ke
{ cc4351, lz2650 , yl4111, yk2822}@columbia.edu

January 31, 2021

1 Introduction

Go-- is an imperative, statically typed language with C-like syntax and support for concurrency.
We take inspiration from goroutine and aim to emulate goroutine with gofunc, and we use
channels for communications in between routines. We choose to adopt goroutine and channel for
concurrency because they have enabled the users to write concurrent programs with fewer lines
of code, neater design, and have provided better readability.

Additionally, we would like to hide away the use of pointers and the details of memory
management from the users. Time permitting, we also plan to explore the possibility of
implementing first-class function.

2 Language Details

2.1 Data Types & Operations

This language has primitive data types including int, bool, float, char and string. Unlike C, this
language doesn’t have pointers. The declaration of array type is of the format dataType
arrayName[arraySize]. For example, int [].

Page 1

Page 2

Data Type Description Operations Examples

int At least 2 bytes,
usually 4 bytes

==, < , >, !=, +, -, *, /,
%, =<, >=, +=, -=, ++,
--

6 ++; # 7
6 / 3; # 2
7 % 3; # 1
6 < 7; # false

float 4 bytes ==, < , >, !=, +, -, *, /,
%, =<, >=, +=, -=, ++,
--

5.22 + 2.0; # 7.22
4.3 < 5.6; # true

bool 1 bit ==, !, !=, &&, || x = true;
!x; # false
1 == 3; # false

char 1 byte =, ==, !=, +, ++,
–, <, >, =<, >=

char test = ‘h’;
‘A’ < ‘B’; # true

string Size varies. An
immutable array of
chars

=, ==, !=, <, >,
=<, >=
(lexicographical), +
(concatenate)

x = “hi”;
y = “boye”;
x + y; # returns
”hiboye”

func Standard function
type: runs in the same
thread

N/A gofunc int foo(int
x, int y){
 int ret = x + y ;
 return ret;
}

gofunc Concurrent function
type: runs in a new
thread

N/A f unc int foo(int x,
int y){
 int ret = x + y ;
 return ret;
}

channel Shared memory for all
threads

<- channel example=
new_channel(int,
3);

example <- 5;
x <-; # x = 5

dataType
[]

array indexing [] int mark[] = {19,
10, 8, 17, 9};

mark[0]; #19

2.2 Keywords

char, int, float, string, func, gofunc, void, channel, if, else,
continue, for, while, break, return, const, go, struct

2.3 Control Flow

if...else…
for
while
break...continue...

2.4 Functions

Go-- supports C like functions after the keyword “func” or “gofunc”, such that “func” represents
a generic function and “gofuns” defines a function to be executed on a concurrent thread. func
main() is an exception given that is the entrant point into the execution of the program and it runs
on the main thread. Like C, all function declarations must include the return type and accept the
standard data typed defined in Section 2.1 as parameters into the functions.

// Standard function: runs of the same thread as the calling thread

func int sum(int x, int y)

{

 return x + y;

}

// Concurrent function: this function will be executed on another thread

gofunc int sum_thread(int x, int y)

{

 return x + y;

}

Page 3

2.5 Comments

Go-- supports the C syntax for comments, including // for a single-line comment and /* … */
or #if 0 … #endif for multi-line comment.

// This is a single-line comment.

/*

 This is an example of

 a multi-line comment

*/

#if 0

All these codes are also commented.

int x = 10;

char c = 56;

#endif

int x = 5;

2.6 Memory

Go-- language supports “pass by value”. Logistics of memory management and pointer
manipulation (e.g. malloc(), free(), etc.) are hidden from the users.

3 Language Features

3.1 Static typing

All variables in the language should be assigned with a type with the syntax

int x = 2;

This enforces the variable x to be type integer, and any declaration or instantiation without an
explicit type assigned should not be allowed, for example :

y = 2;

Page 4

Is not allowed in the language.

3.2 Functions

In the language, we have built-in function types, with keywords “gofunc”, “func” denoting
different types of functions. And because the language is static-typed, the type of function
arguments should be explicitly given.

3.2.1 Concurrent Functions

Concurrent Functions are denoted by keywords “gofunc”, which indicates the function can be
runned in a concurrent manner using the keyword “go”, the return type should be explicitly given
in the function signature, for example:

gofunc int foo(int x, int y){

int ret = x + y ;
return ret;

}

Takes two argument x and y and returns an integer as an result, And :

gofunc void foo2(int x, int y){

return;
}

Takes two arguments and returns void. And sample code like:

go foo(1,2);
go foo2(1,2);

Runs in a concurrent manner. That is, line 2 is executed concurrently with line 1 without waiting
line1 finishes its execution and could finish before line 1 finishes. For example if we have
function:

gofunc void print1(){

print(“first\n”);
}

gofunc void print2(){

print(“second\n”)
}

Page 5

And if we have code:

go print1();
go print2();

The output could either be:

first
second

or

second
first

Depending on the underlying scheduling architecture of the operating system.

3.2.2 Normal Functions

Normal Functions are denoted by keywords “func”,the return type should be explicitly given in
the function signature, for example:

func int foo(int x, int y){

int ret = x + y ;
return ret;

}

Takes two argument x and y and returns an integer as an result, And :

func void foo2(int x, int y){

return;
}

Takes two arguments and returns void. And sample code like:

foo(1,2);
foo2(1,2);

Runs in a sequential order. That is, line 2 will start execution after function call in line 1 returns.

Page 6

3.2.3 First class functions

All functions can be treated as variables of built-in types of “gofunc” and “func”and be assigned
to variables.In the assignment, the return type of the function should be explicitly given.. For
example, we can have

gofunc int foo = gofunc int (int x, int y) {return x+y;};

And then we can have

int i = go foo(1,2);

And the value of i will be 3 after the code execution.

3.3 String

String is built-in in our language as a type so that users do not have to deal with the underlying
pointers. Just like other primitive types, users can declare a string using syntax:

string s = “Hello World”

3.4 Channel

Channel is a built-in type that operates like FIFO pipes with fixed memory and can be shared
among different concurrent running go functions.

3.4.1 Declaration

Users can declare a channel using the library function new_channel(type,int size) . The
parameter type and size specifies the data type and size of the channel being created, For
example, a channel that can contain 5 integers can be declared using the following syntax:

channel example= new_channel(int, 5);

Page 7

3.4.2 Access elements

Function calls can both enqueue and dequeue the data in the channel use operator <- , For
example, if we have a channel declared as in 3.4.1. The code:

example <- 5;
int x <- example;

will enqueue 5 into the channel after line 1 finishes execution, and code in line 2 will dequeue 5
and assign value 5 to variable x. Channels follow first-in-first-out rules and concurrent access is
taken care of by the underlying implementation of the language.

3.5 Standard Library

In the Standard Library we will include functions like print,new_channel , and string
manipulation functions like strlen as time allows.

4 Examples

// Sample program

gofunc void f(int num)

{

 for (int i = 0 ; i < 3 ; i++)

 {

 printf("%d" , num);

 message <- “goodbye”; // Insert string into channel

 }

 message <- “final goodbye”;

}

func string ftwo(int num)

{

 message <- “hello”;

 return “hello”;

}

Page 8

func int main()

{

 int a = 3 ;

 // Creating a channel for a maximum of 5 strings

 channel message = new_channel(string, 5);

 // f() is running on a concurrent thread

 go f(a);

 a = 4 ;

 string str = ftwo(a); // Execute in main thread

 // Execute an anonymous function

 func void ()

 {

 printf(“anon.function”);

 }();

 // Store an existing or a new function as a variable

 func funcvar = ftwo;

 funcvar(1);

 func func2var = func void()

 {

 while (1){}

 }

 // Read strings from the channel

 for (int i = 0 ; i < 5 ; i++)

 {

 printf("%s" , <- message);

 }

 return 0 ;

}

Page 9

