
GPXWizard (GWiz)

Katherine Duff (kpd2128)
Ashley Kim (atk2141)

Elisa Luo (eyl2130)
Rebecca Yao (rby2107)

February 3, 2021

Introduction

“Gee-whiz”
adjective: gee-whiz
characterized by or causing naive astonishment or wonder, in particular at new
technology.’

The GPXWizard, or GWiz, is a programming language that allows for the
modification and analyzation of GPX files. GPX files are generated by using a
watch, phone, or other device to track a run, walk, swim, hike, or bike ride.

A GPX file is a GPS file in GPS exchange format and is saved in XML file
format. It stores information such as waypoints, tracks, and routes. Waypoints
(<wpt>, </wpt>) are the simplest form of data in a GPX file, as they only
store latitude and longitude. Tracks (<trkpt>, </trkpt>) consist of a series of
waypoints with time stamps. Between every track point is a straight line, so the
more track points recorded, the more accurate and smoother the track will be.
Routes (<rtept>, </rtept>) are a series of waypoints, where each waypoint is
a significant landmark.

All GPX data interpretation and adjustments can be completed in the
Activity class built into GWiz. Basic syntax will most closely resemble Java.
GWiz is object oriented, allowing a user to compare 2 Activity objects where
each Activity is 1 GPX file. Activity is similar to the LinkedList ADT, as this
is where waypoints, trackpoints, or route points will be stored sequentially.

Purpose

Have you ever gotten so infuriated during a run you threw your phone
across the road, only to later discover your digitally tracked running path had
a bump in it because you forgot to pause activity when you tossed your phone?

1

Probably not since most of us are computer scientists and are allergic to the
outdoors, but if you happened to experience this, GWiz can fix it.

GPS isn’t perfect. GWiz allows for a user to retroactively edit points in
their route. Or if a user accidentally stopped an activity and had to start a
new one, GWiz can help them merge the two. A user can also easily compare
multiple activities they completed to track their progress. Many fitness tracking
apps allow for limited modifications to an activity, but by allowing a user to toy
directly with the source GPX file, GWiz has a plethora of ways a user can edit
and analyze their run/bike/walk.

Syntax

Data Types

Primitive Data Types

A primitive data type specifies the size and type of variable values, and it has
no additional methods.

Type Size Description Examples

int 4 bytes
Stores whole numbers from
-2,147,483,648 to 2,147,483,647

99999999999999,
17, 420

double 8 bytes
Stores fractional numbers. Sufficient
for storing 15 decimal digits

0.66666666667,

3.14159265

bool 1 bit Stores true or false values True, False

char 2 bytes Stores a single ASCII character ’F’, ’@’, ’;’

Dynamically Allocated Types

Type Description Example
String An array of chars String s = "hello";

Array Sequential block of variables of the same type arr[3] = {3,6,9}

2

Complex Types

Built-in types that are represented as objects.

Type Description
Constructor
Parameters

Methods/attributes

GPXFile
An abstract representation of file
and directory pathnames. The
original GPX file is read-only.

filepath (String)
- the absolute file path
to the .gpx file

Attributes: filepath

GPXScanner
A simple text scanner that can parse
a GPX file using regular expressions.

none
read gpx (GPXFile file)
- parses the .gpx file specified
by the file parameter

Coordinate
Representation of a single coordinate
of longitude and latitude on Earth.

longitude (double)
latitude (double)

Attributes: longitude, latitude
Accessor functions only

DateTime
Representation of a single naive
date and time.

UTCDateTime (String)
OR
year (int), month (int)
. . . etc.

Attributes: year, month, day,
hour, minute, second
Accessor functions only

TrackPoint
Representation of a single GPS
waypoint (Coordinate & DateTime)

coor (Coordinate)
dt (DateTime)

Attributes:
nextPoint, prevPoint,
dist2next, time2next...etc
calc time2next()
- returns the timeDelta to the
next TrackPoint
calc dist2next()
- returns the distance to the
next TrackPoint

Activity A linked list of TrackPoints
head (TrackPoint)
- the first TrackPoint
in the linked list

Attributes:
name, total distance, total
time, head, tail
calc tot dist(), calc tot time()

Separators

• parentheses ()

• curly brackets {}

• square brackets []

• semicolon ;

• comma ,

• period .

• double quotes ” ”

• single quotes ’ ’

3

Control Flow

Keyword Usage Example

if Handles conditional statements
if(x==5){
print(”x is 5”);
}

for Handles loop operations

for (int i=0; i<5; i+=){
print(i);
}
//prints 0 1 2 3 4

while Handles loop operations

int x = 0;
while (x<10){
print(x);
x+=2;
}
//prints 0 2 4 6 8

continue

When a continue statement is
encountered inside a loop, control
jumps to the beginning of the loop
for the next iteration

for (int i=1; i<10; i++){
if (i==5){
continue;
}
print(i);
}
//prints 1 2 3 4 6 7 8 9

break
Terminates a loop based on
a condition, continues at next
statement

for (int i=1; i<10; i++){
if (i==5){
break;
}
print(i);
} //prints 1 2 3 4

4

Operators

Operator Usage Example
+,
-,
∗,
/,
%

Addition,
Subtraction,
Multiplication,
Division,
Mod

1 + 2 = 3
3 - 9 = -6
7 * 8 = 56
5 / 1 = 5
30 % 4 = 2

= Assignment x = 2;
+=,
-=,
=,
/=

Addition assignment,
Subtraction assignment,
multiplication assignment,
Division assignment

x += 3; // x = x + 3
x -= 7; // x = x - 7
x *= 5; // x = x * 5
x /= 3; // x = x / 3

==,
!=

Equality comparator for primitive types,
works for all built in types

8 == 8; //returns True
8 != 9; //returns True

&&,
||,
!

Logical AND,
OR,
NOT

x <5 && x <10
x <5 ||x<3
!(x<4)

<,
>,
<=,
>=

Less than,
Greater than,
Less than or equal to,
Greater than or equal to

for x=3...
x>4; //returns False
x<=3; //returns True
x>=5; //returns False

[] Index
array[0] = 100;
// initializes first element of
array to 100

Miscellaneous

The language has a similar comment structure to Java

• // This is a single line comment

• /∗
This is a multi
line
comment
∗/

Keywords

• null: a complex type with no value

• void: designates a function without a value to be returned

• Run, Walk, Swim, Bike: designates Activity type

5

• main: designates the main function

• for: looping structure

• while: looping structure

• if, else if, else: conditional control flow

• true, false: for bool type, designates true and false values

• throw: designates when an Error object should be instantiated and re-
turned

• return: end of function, followed immediately by value to be returned if
applicable

User Defined Functions

Example 1

bool greaterThanTwo (int a) {

return (a > 2);

}

Example 2

int gcd (int a, int b) {

int remainder = 0;

while (a % b > 0) {

remainder = a % b;

a = b;

b = remainder;

}

return b;

}

Sample Program

Compare Distance

This program takes two .gpx files and prints out the longer of the two distances
travelled.

void main() {

// Create two GPXFile objects with .gpx files taken from a run

GPXFile jan30 = GPXFile(user2_01_30_2021.gpx);

6

GPXFile jan31 = GPXFile(user2_01_31_2021.gpx);

// Create GPXScanner object to parse the two GPXFiles

GPXScanner reader = GPXScanner();

// Parse the GPXFile using the GPXScanners method read_gpx()

Activity satRun = reader.read_gpx(jan30);

Activity sunRun = reader.read_gpx(jan31);

// Use the Activity objects distance method to get distances for each

double satDist = satRun.calc_tot_dist();

double sunDist = sunRun.calc_tot_dist();

// Compare total distances and print distance of the longer activity

if (satDist > sunDist) {

print(satDist);

} else {

print(sunDist);

}

}

Change Starting Point

This program parses a .gpx file, then changes the starting latitude, longitude,
date, time and prints out the new total distance.

void main() {

// Create a GPXFile object

GPXFile file1 = GPXFile(user3_01_21_2021.gpx);

// Create a GPXScanner object to parse the GPXFile

GPXScanner reader = GPXScanner();

// Parse the GPXFile using GPXScanners method read_gpx();

Activity goldenRun = reader.read_gpx(file1);

// Create new TrackPoint object with a coordinate and DateTime

Coordinate c = Coordinate(0, 0);

DateTime dt = DateTime(2021-01-21T23:30:42Z);

TrackPoint tp = TrackPoint(c, dt);

// Modify the head of the Activity to be the above TrackPoint

goldenRun.head.data = tp;

print(goldenRun.calc_tot_dist());

}

7

Conclusion

Inspiration for this project was taken from a few of the group member’s
religious use of the popular fitness app Strava. We also wanted to pay homage
to the introductory programming language at Columbia University, Java, so
created Java + Strava = GPXWizard. Don’t ask how that string addition (not
concatenation) worked.

8

